印度空间研究组织 (ISRO) 在周三的一份声明中表示,印度空间研究组织 (ISRO) 于周六用 PSLV-C54 发射的纳米卫星发射中心发射的 Gaganyaan 已开始提供图像服务。国家遥感中心 (NRSC) 于周二收到了第一批图像。这些图像是 Shadnagar,覆盖了喜马拉雅地区、古吉拉特邦库奇地区和阿拉伯海。ISRO 告知,这些图像是由海洋颜色监测器 (OCM) 和海面温度监测器 (SSTM) 传感器捕获的。印度首次载人航天任务 Gaganyaan 处于不确定状态,宇航员接受部分训练,ISRO 保持沉默 2022 年 12 月 4 日 打印 Gaganyaan,印度首次载人航天任务,由于疫情而多次推迟,似乎处于不确定状态。印度空间研究组织 (ISRO) 尚未发布该项目的修订时间表,该项目旨在将三名宇航员组成的机组人员送入 400 公里的轨道,运行三天。 “私营部门将发挥重要作用”:In-SPACe 首席执行官谈 2023 年小型卫星发射和太空初创企业 2022 年 12 月 5 日 News18
随着第一颗立方体卫星的发射,人们开始将卫星轻松送入近地轨道。如今,世界各地的许多教育机构都在设计、建造和运营立方体卫星,用于教育和科学目的。这篇硕士论文介绍了瑞典基律纳吕勒亚理工大学空间校区为实现灵活地面段而进行的硬件和软件设计和开发。现有的地面站经过改造,可以支持更多的频率和操作模式,使大学未来的纳米卫星项目能够轻松进行空间通信。采购新设备,并使用 19 英寸机架将新设备与现有设备一起安装在新位置。本论文介绍了一种使用软件定义无线电的地面段设计,以提高灵活性和适应性。地面站的软件开发与北极商业孵化器中的一家初创公司 Remos Space Systems 共同进行,该公司正在开发一款商业地面站软件。此外,还对在大学建立 S 波段接收地面站进行了简要分析,并对任务控制软件进行了权衡分析。该论文为太空校园地面站再次投入运行奠定了基础,并强调了未来的发展需求。
本文提出了一种分散式、分布式制导与控制方案,将异构卫星组件群组合成大型卫星结构。异构卫星群的组件卫星的选择以提高最终形状的灵活性,其灵感来自晶体结构和伊斯兰瓷砖艺术。在选择理想的基本构建模块后,进行基本的纳米卫星级卫星设计,以协助涉及姿态控制的模拟。群体轨道建造算法 (SOCA) 是一种制导和控制算法,用于实现在轨组装所需的有限类型异构性和对接能力。该算法由两部分组成:分布式拍卖使用障碍函数来确保为每个目标选择合适的代理;轨迹生成部分利用模型预测控制和顺序凸规划来实现到达所需目标点的最佳无碰撞轨迹,即使在非线性系统动力学的情况下也是如此。优化约束使用边界层来确定是否应应用防撞约束或对接约束。该算法在模拟扰动 6 自由度航天器动态环境中针对平面和非平面最终结构以及两个机器人平台(包括一群无摩擦航天器模拟机器人)进行了测试。
印度的太空探索之旅有着深厚的根源,可以追溯到古代,当时宇宙知识就被记录在古代经文中。然而,直到 5 世纪,随着阿耶波多 (Aryabhata) 的贡献,天文学出现了一种更精确的数学方法,使其摆脱了神秘主义和对日历的关注。后来,巴斯卡拉二世 (Bhaskara II) 和瓦拉哈米希拉 (Varahamihira) 等学者提出了这些见解,为现代太空探索的成就铺平了道路。印度天文学家的影响并没有就此结束,因为他们的太空探索继续成为当代天文学家的一部分。印度国家空间研究委员会 (INCOSPAR) 于 1962 年成立,由维克拉姆·A·萨拉巴伊 (Vikram A. Sarabhai) 博士领导。同年,Thumba 赤道火箭发射站也在特里凡得琅附近建立。印度的太空探索是世界上最古老的探索之一,在国家发展中发挥了至关重要的作用。印度航天局迄今已完成 125 次航天器任务,其中包括三颗纳米卫星和一颗微型卫星;94 次发射任务;两次再入任务;来自 34 个国家的 431 颗外国卫星;15 颗学生卫星;以及三颗由印度私营企业制造的卫星。
近期太空项目的兴起 [1] 重新引发了人们对卫星通信的兴趣。这在物联网 (IoT) 社区中尤为明显,该社区不断寻求多样化应用场景 [2],同时提供全球任何地方的网络覆盖。卫星在新的太空环境中独有的特性(廉价发射和快速采购廉价纳米卫星,又称立方体卫星)为物联网网络提供了架构替代方案,具有前所未有的规模和灵活性 [3]。部署在地球同步轨道 (GEO) 上的卫星的自转周期与地球相同(在地面观察者看来是静止的),可以为 35,786 公里高度的特定区域提供持续的网络连接(图 1 和表 I)。另一方面,低地球轨道 (LEO) 卫星以大约 7 公里/秒的速度在较低高度(160 公里至 1,000 公里之间)移动,并且可以在可预测的时间间隔提供间歇性和定期网络连接。当部署在星座中时,LEO 卫星可以增加重访频率,但至少需要 60 颗卫星才能确保持续覆盖。通过在这些卫星上搭载物联网设备,出现了新的连接机会。通信技术的进步使得今天可以使用与地面物联网网络相同的技术在物联网设备和卫星之间直接通信 [4],这直到最近几年才闻所未闻。此类技术最显著的进步包括 LoRa/LoRaWAN [5] 和 NB-IoT [6],它们提供长距离通信能力并降低设备能耗(18 mA @7dBm)。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
需要完善的通信基础设施来促进增长,这是 2020 年欧洲数字议程的一部分。目标包括到 2020 年,所有家庭将拥有 >30 Mbit/s 的互联网接入,50% 的家庭将拥有 >100 Mbit/s 的接入。再加上无线设备的预期增长,将推动核心网络对带宽的需求增加。本 SRT 呼吁开发计量基础设施来支持这一战略。先进的天线和 MIMO 的 OTA 测试带来了重大的计量挑战。目前可用的测试方法使用模拟环境的信道模拟器和混响室。需要不确定性数据来验证自适应系统(如微型卫星、MIMO 和动态定向天线系统)的测试结果,这些系统将出现在未来的 RF 传感器网络和可穿戴天线系统中。纳米卫星代表了一种低成本的空间工程方法,这种方法正变得越来越有吸引力。纳米卫星天线、有效载荷和太阳能电池板系统的测试需要良好的计量和多学科方法。包括无源光网络 (PON) 和 RoF 在内的几种技术已被确定为通信网络“最后一英里”分布的候选技术,这是一个对价格极为敏感的领域。RoF 具有在 60 GHz 频段实现高带宽、短距离、视距通信的潜力。
近期太空项目的兴起 [1] 重新点燃了人们对卫星通信的兴趣。这在物联网 (IoT) 社区中尤为明显,该社区不断寻求多样化应用场景 [2],同时提供全球任何地方的网络覆盖。卫星在新的太空环境中独有的特性(廉价发射和快速采购廉价纳米卫星,又称立方体卫星)为物联网网络提供了架构替代方案,具有前所未有的规模和灵活性 [3]。部署在地球同步轨道 (GEO) 上的卫星的自转周期与地球相同(在地面观察者看来是静止的),可以为 35,786 公里高度的特定区域提供持续的网络连接(图 1 和表 I)。另一方面,低地球轨道 (LEO) 卫星以大约 7 公里/秒的速度在较低高度(160 公里至 1,000 公里之间)移动,并且可以在可预测的时间间隔提供间歇性和定期网络连接。当部署在星座中时,LEO 卫星可以增加重访频率,但至少需要 60 颗卫星才能确保持续覆盖。通过在这些卫星上搭载物联网设备,出现了新的连接机会。通信技术的进步使得今天可以使用与地面物联网网络相同的技术在物联网设备和卫星之间直接通信 [4],这直到最近几年才闻所未闻。此类技术最显著的进步包括 LoRa/LoRaWAN [5] 和 NB-IoT [6],它们提供长距离通信能力并降低设备能耗(18 mA @7dBm)。
ION SCV011 被称为“Savvy Simon”,将搭载 16 个有效载荷,其中一个未公开:Kelpie-2,一颗由 AAC Clyde Space 为 ORBCOMM 设计和建造的 3U 卫星,将根据空间数据即服务协议,向 ORBCOMM 及其客户独家提供自动识别系统 (AIS) 数据;EPICHyper-2,一颗由 AAC Clyde Space 设计和建造的 6U EPIC 立方体卫星,将向其合作伙伴加拿大地球观测公司 Wyvern Inc 独家提供高光谱数据;Spei Satelles (SpeiSat),一颗由都灵理工学院和意大利航天局开发的纳米卫星,配备先进的传感器来研究太空环境。该卫星还将通过一本印有 2020 年出版物的纳米书传递希望与和平的信息; Mission 1 是 Outpost 的首个卫星项目,旨在为该公司的渡轮航空电子系统获得重要的飞行经验,之后将开始首次返回地球的任务;NaviLEO™ 是由 SpacePNT 开发的一款低成本、高性能全球导航卫星系统 (GNSS) 接收器;ODIN Space 的 ODIN-DU1 是一款托管传感器,也是首次安装分布式网络,将提供有关致命亚厘米碎片的新数据;RAL Space 的 UKRI SWIMMR-1 是一款空间辐射监测器,旨在收集空间天气监测数据。ION 还将搭载两台 Alba Orbital 的 AlbaPod 6P PocketQube 卫星部署器,将六颗 PocketQube 卫星送入轨道。
序言 每个国家,无论大小,都渴望将自己的卫星发射到太空,并希望为本国的科学家/学生提供机会,鼓励他们继续进行太空研究。对于大多数国家和学术机构/大学来说,这仍然是一个遥远的梦想!包括前南斯拉夫国家(波斯尼亚和黑塞哥维那、马其顿、黑山、克罗地亚、塞尔维亚和斯洛文尼亚)。塞尔维亚空间计划发展委员会 (CSPD) 一直在努力为前南斯拉夫国家提供建造和发射卫星的机会。在过去 2-3 年的持续努力下,CSPD 成功与印度建立了工作关系,并为印塞合作研究铺平了道路,从而实现了小国卫星的发射。为了实现将纳米卫星发射到低地球轨道 (LEO) 的梦想,在过去 3-4 年里,通过 CanSat/火箭竞赛、立方体卫星研讨会、研讨会等,在各个国家,尤其是塞尔维亚/印度,采取了系统有机的方法,创造和维持从学校到高等教育生态系统对空间科学和工程教育的兴趣。塞尔维亚 CSPD 于 2019 年 10 月在塞尔维亚举办了国际 CanSat/火箭竞赛,来自印度和其他国家共 5 支队伍参加了比赛!CSPD 负责人 Dusan 先生访问了印度参加国际会议,并与印度技术大会协会 (ITCA) 签署了一份举办世界 CanSat/火箭锦标赛的谅解备忘录,并已开始与志同道合的国家/组织进行谈判。