气候危机正在加剧现有漏洞和全球不平等现象。随着人类活动的排放量不断上升,地球继续升温,极端的天气事件将变得更加频繁,更严重,慢发作的影响将更快地积累,更多的人将被迫逃离自己的家,并在他们的国家或国外寻求庇护。今天已经可以看到气候危机的位移影响。从2013年到2023年,由于全球极端天气事件,每年平均有2360万人流离失所,2022年的内部流离失所为3260万。1由于气候缓慢的影响,例如荒漠化和海平面上升,还有更多人被迫离开家。世界上大多数气候难民都来自低收入国家的脆弱社区,在这些社区中,环境下降和气候变化与贫困,压迫和冲突等其他压力源相交并加剧并加剧了其他压力。2
MD. FATIN ISHRAQUE 助理教授,孟加拉国帕布纳科技大学(PUST)电气、电子与通信工程(EECE)系,帕布纳 6600。邮箱:fatineeeruet@gmail.com;fatin@pust.ac.bd;现住址:孟加拉国帕布纳 Monsurabad R/A,GA 区,5 号路,174 号楼。永久地址:孟加拉国朗布尔,5400,朗布尔萨达尔,Khalifapara,17 号病房,651/006 号楼。手机:+8801712501856 Google Scholar 链接:https://scholar.google.com/citations?user=rhfdJuYAAAAJ&hl=en ORCID ID:0000-0003-0863-5169 LinkedIn ID:https://www.linkedin.com/in/fatineee ResearchGate 个人资料:https://www.researchgate.net/profile/Md- Ishraque Scopus 个人资料:https://www.scopus.com/authid/detail.uri?authorId=57215128649
磁性自加热聚合物的开发是许多应用领域中备受关注的领域。磁性填料的固有磁性在这些纳米复合材料的最终加热能力中起着关键作用。因此,已经有报道称,与平均尺寸 1 相似的球形纳米粒子相比,Fe3O4 磁性纳米立方体的加热效率有所提高。该结果是由于磁各向异性的贡献,从而产生了更高的磁矫顽力,从而产生了更高的 SAR(比吸收率)值。在这项工作中,通过热分解过程合成了定义明确的 Fe3O4 纳米立方体,其平均粒径约为 70 纳米(TEM)(图 1)。通过测量交流电磁滞回线估算 SAR 值,纳米立方体分散在水中时的值约为 900 W/g,分散在琼脂(0.5% wt)中的值约为 350 W/g,频率为 403 kHz,场振幅为 30kA/m。在这种情况下,SAR 值的下降是由于介质中粒子的不动,因此是粒子的布朗运动。还描述了温度升高,与平均直径相似的球形纳米粒子相比,纳米立方体的加热性能明显增强(图 2)。最后,通过施加外部交流磁场和亥姆霍兹线圈(319 kHz、400A、约 200G,感应设备型号 EasyHeat Ambrell),研究了纳米复合材料(磁性纳米粒子重量占 30%)的加热能力。研究了聚合物圆盘厚度对最终温度的影响(厚度为 2 毫米和 4 毫米,直径为 30 毫米)。因此,厚度为 2 毫米和 4 毫米的纳米复合材料在 2 分钟后分别达到 100°C 或 250°C 的温度。
纳米技术的最新进展促进了靶向药物输送系统的发展。然而,长期以来,人们一直梦想着开发一种有效的药物输送系统,以克服与靶向药物输送相关的问题,如溶解度低、生物利用度低、药物降解、药物毒性。为了克服这些缺点,人们开发了一种新型载体,称为纳米海绵。纳米海绵是一种新型的新兴纳米载体,用于控制局部用药的受控药物输送的释放速率。纳米海绵是小于 1 µm 的小网状结构。由于其多孔结构和小尺寸,它们可以轻松与溶解性差的药物结合,从而提高生物利用度和溶解度,并能够装载亲水性和亲脂性药物。这种纳米载体增加了水不溶性药物的溶解度,提高了生物利用度,降低了药物毒性,避免了药物降解,并将药物靶向到特定部位,从而促进了控制释放。纳米海绵被配制成不同的剂型,如肠胃外、局部、口服或吸入。本综述试图强调药物输送系统的优点、特点、影响因素、制备方法、表征和应用。
于1964年在新德里的Kirti Nagar,Rajdhani学院,以前是政府学院成立,并在自主治理下发展。是德里大学的组成,它庆祝了50年的学术卓越。位于拉贾花园附近的西德里,可以通过Ramesh Nagar和Rajouri花园地铁站轻松进入。最初安置在一栋适度的学校建筑中,该大学演变成德里大学的主要机构之一。学院综合大楼包括一个空调的研讨会/研讨会室,一个礼堂以及一个储存良好的图书馆,该图书馆带有计算机和互联网设施,可访问一本超过一本LAC学术书籍和电子书。此外,该学院还配备了州的科学实验室以及数学和计算机实验室。
拼布的系统、数学和程序基础使该领域成为入门级计算机科学 (CS) 教育的一个有用隐喻,尽管它目前主要用于 K-16 教育环境。考虑到成年女性的非正式 CS 教育,我们通过探索熟练的工匠如何在 CS 教育背景下参与和理解拼布作为隐喻来研究这一隐喻的潜在深度。在本文中,我们报告了我们与拼布工的第一个焦点小组的发现,以比较他们对拼布和 CS 的看法和经验。我们确定了拼布工如何将这两个领域联系起来的六个共同主题:天生技能与后天学习技能、计算技能作为个人表达的辅助、避免计算、时间投入和有形奖励、社区对动机和学习的影响以及系统偏见及其影响。我们详细阐述了我们的发现,并讨论了将工艺和计算相结合的教育技术设计的潜在应用。
摘要:在发现X射线后,闪烁体通常用作诊断医学成像,高能物理学,天体物理学,环境辐射监测和安全性检查中的高能辐射传感器。常规闪烁体面临的内在局限性,包括闪烁的光的提取效率低和发射率低,导致商业闪烁体的效率小于10%。克服这些局限性将需要新材料,包括闪烁的纳米材料(“纳米激素”),以及提高闪烁过程效率的新的photonic方法,提高材料的排放速率,并控制闪烁光的光的方向性。在这种观点中,我们描述了新出现的纳米弹性材料和三个纳米光子平台:(i)等离子体纳米纳米菌 - (ii)光子晶体和(iii)高性能闪烁体的高Q跨面。我们讨论了纳米激素和光子结构的组合如何产生“超闪烁体”,从而实现最终时空分辨率,同时在提取的闪烁发射中可以显着提升。
摘要输入物联网(IoT)和第五代(5G)移动网络的时代,对紧凑,成本效益和高音传感器和执行器的需求飙升。光学技术作为对常规电气技术的补充,为构造广泛应用的传感器和执行器提供了一种多功能平台,显示了高数据速率,强大的多重能力,快速响应,低串扰,低串扰以及对电磁干扰的免疫力的优势。在本文中,我们对光学传感和驱动技术的开发过程进行了全面综述。在光学检测器,光传感器(进一步分为物理和化学/生物传感器)中的应用以及光学通信/计算/成像。对于每个应用程序的每个类别,都遵循从光学微电体式系统(MEMS)和纳米光子学到光子纳米系统的技术演变趋势引入进度。还提出了光学传感/致动技术的未来开发方向。
“碰巧的是,一位Omniwar参与者丹尼尔·布鲁迪(Daniel Broudy)最近的一篇论文启发了我恢复对纳米级技术的研究。的想法是,即使在头顶上划痕的杂种袋也可能包含精致的纳米机器人,可以通过5G路由器激活这些纳米机器人,以监视或操纵受试者的身体和大脑[可能]……我并不是说我没有说约翰逊(Johnson),布鲁德(Broudy),布鲁迪(Broudy)和休斯(Hughes)浮出水面的vaxxxbot理论。我是说我不相信他们 - 他们的原始资料具有很大的价值,我赞扬他们的研究工作。”乔·艾伦(Joe Allen)/炸弹
