氧化铝(Al 2 O 3)纳米结构通过绿色合成方法在铝箔底物上合成,使用热水处理方法在75°C下持续1、7、15和30分钟。在这项研究中,增长时间有所不同,以研究其对Al 2 O 3纳米结构的大小和密度的影响。使用SEM成像和XRD分析研究了准备准备的Al 2 O 3纳米结构的形态和结构特性,并通过UV-VIS光谱研究了光学特性。扫描电子显微镜(SEM)研究显示,随着80 nm-35 nm范围内的多孔纳米结构粒径随着合成反应时间从1增加到1分钟,多孔纳米结构粒径在80 nm-35 nm范围内降低。X射线衍射(XRD)分析表明,晶体行为随时间的增加而增加。光学性质结果表明,Al 2 O 3纳米结构在紫外线区域显示出相对较宽的吸收光谱。此外,当浸入时间分别从1分钟增加到30分钟时,能量差距(例如)从3.44增加到3.78 eV。这些结果对基于HWT Al 2 O 3纳米结构的Al 2 O 3辅助电子应用有重大影响。
使它们适合于纳米素质,纳米传感,纳米电子等学科等。[5]。有许多类别的纳米线,根据其组成,结构和特性进行分组。•半导体纳米线:这些是使用硅,硝酸盐或氧化锌等半导体材料生产的,并在电子和光子学中广泛使用,用于半导体,太阳能电池,太阳能电池和光发射diodes(LEDS)等。[6]。•金属纳米线:这些由金,银或铜等金属元素组成,并用于导电电极/膜等应用中,作为化学过程的催化剂等。[7]。•氧化物纳米线:这些纳米线是使用金属氧化物(如二氧化钛或氧化铁)产生的,并用作传感器,催化剂和基于能量的储存电子[8]。•碳纳米管:具有类似于纳米线的特性的空心纳米结构。他们在电子,材料科学和生物医学工程中有应用[9]。•混合纳米线:这些由不同的
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
摘要:催化剂层(CLS)的多尺度设计对于将氢电化学转换设备推向商业化部署很重要,但是,多尺度CL组件之间的复杂相互作用,高合成成本和庞大的设计空间,这一数字受到了极大的阻碍。我们缺乏能够准确反映纳米结构 - 性能关系并有效地搜索设计空间的理性设计和优化技术。在这里,我们用深层的人工智能(AI)框架填补了这一空白,该框架集成了最近的生成AI,数据驱动的替代技术和集体智能,以有效地搜索由其电化学性能驱动的最佳CL纳米结构。Glider通过利用量化量化矢量自动编码器的维度降低能力来实现现实的多尺度数字发电。滑翔机的强大生成能力可以有效搜索CLS的PT碳 - 离子体纳米结构的最佳设计参数。我们还证明滑翔机可以转移到其他燃料电池电极微结构产生,例如纤维气体扩散层和固体氧化物燃料电池阳极。滑翔机作为设计和优化广泛的电化学设备的数字工具。关键字:燃料电池,生成人工智能,多尺度设计,多物理,催化剂层
摘要:手性纳米结构允许手性反应的工程;但是,它们的设计通常依赖于经验方法和广泛的数值模拟。尚不清楚是否存在一般策略来增强和最大化亚波长光子结构的内在手性。在这里,我们建议一种显微镜理论,并揭示了共振纳米结构的强性手性反应的起源。我们揭示了反应性螺旋密度对于在共振下实现最大的手性至关重要。我们在平面光子晶体板和元图的示例上演示了我们的一般概念,其中平面镜像对称是通过双层设计打破的。我们的发现为设计具有最大手性的光子结构提供了一般配方,为许多应用铺平了道路,包括手性传感,手性发射器和探测器以及手性量子光学器件。关键字:光学手性,手性元结构,连续体中的界限,圆形二科主义
摘要。纳米结构和量子点对增强光伏能量转化效率具有重大影响,这在这项综合研究中证明了这一点。纳米结构和纳米化颗粒的材料通常用于解决与能量转化有关的紧急问题。使用纳米结构物质来解决能源和自然资源的问题,最近引起了很多兴趣。方向性纳米结构特别显示了能量转换,收集和存储的希望。由于其独特的特性,例如电导率,机械能和光致发光,由碳(CQD)制成的量子点和石墨烯量子点(GQDS)已集成到混合光伏电动机 - 心电图 - 心电图系统(PV-TE)中。它评估了纳米结构对太阳能技术的影响,特别是它们如何改善太阳能电池中的功率转化和光吸收。光学探测器将光子能量转化为电信的信号,是CQD引起注意的许多光电使用,因为它们是当代成像和通信系统的重要组成部分,例如可见光照明摄像头,机器视觉,机器视觉,X射线X射线和近交易的图像处理以及可见光的光检测设备。除了超级电容器外,该研究还研究了纳米结构如何通过作为氢合成和超级电容器的光催化剂来促进可持续解决全球能源危机的关键作用。
天然岩石风化有可能将CO 2的大约10 5吉甘作为固体碳酸盐存储。1,2然而,将硅酸盐和CO 2转化为碳酸盐的转化速度很慢,导致每年仅0.13 Gigatons的矿化。1这里,我们演示了一个连续的流量电化学反应器,能够以惰性碳酸盐矿物质的形式捕获和永久存储CO 2。通过电解质产生H +和OH - 在由Ca 2+选择性膜分隔的腔室中,这种“风化电解油”可加速岩石风化的岩石,最多3个数量级。H+将硅酸盐分解为化学室中的反应性Ca 2+物种,而OH - 与CO 2和Ca 2+反应,在相邻的阴极室中形成Caco 3矿物。我们表明,风化电解仪能够衍生自烟气和空气的矿化CO 2,同时避免将CO 2与常规捕获单元隔离开来。
印度坎普尔208016的印度理工学院生物科学与生物工程系(BSBE),印度北方邦;昆士兰大学医学院Brisbane 4102,澳大利亚昆士兰大学医学院B Frazer Institute; C炎症中心,S CIENCE学院,S YDNEY,S YDNEY,S YDNEY,SYDNEY,S YDNEY,2007年,澳大利亚; d School of Pharmacy , The University of Queensland , Brisbane 4102, Australia “ for suc c essful clinical transla tion, crea ting MSCM-nanoconstructs en tails car efully considering sev eral fact ors, including the c on- struct's features, therapeutic goals, mode of administra tion, bioav ailability, biodistribution, t oxic olog ical study, and pa tien t-specific变量”文章历史记录于2024年4月7日收到; 2024年6月14日,关键字生物利用度;生物分布;仿生;临床翻译;间充质干细胞膜;间充质干细胞; MSCM-NANOC构造; Nanodec oy s;纳米颗粒;可伸缩性; to to to to tog golic con
摘要。随着全球对可持续交通的需求日益增加,电动航空成为寻求传统化石燃料系统绿色替代品的重要前沿,其中光电聚合太阳能电池 (OPV) 和储能技术的进步站在改变航空业的前沿。随着仪器技术和量子力学的进步,纳米材料作为一门新学科出现,在储能领域有广泛的应用。本文研究了各种纳米结构材料(如碳基材料、金属氧化物、导电聚合物和混合纳米结构)在增强电动飞机储能能力方面的潜力。以石墨烯为例,这些材料通过利用其固有特性,提供了更大的表面积、缩短了电极材料内的离子和电子传输路径、提高了机械稳定性并增强了电导率。研究结果强调了结合不同纳米材料的协同效应,这不仅可以增强储能系统的电化学性能,而且可以为克服电动航空面临的重大挑战铺平道路。尽管取得了令人鼓舞的进展,但人们承认,在材料集成以及这些技术在商业应用中的更广泛采用方面仍存在障碍。总之,本文为进一步推进和发展电动飞机提供了机会。
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。