摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
在锂离子电池阴极N. Balke 1,S。Jesse 1,A。N. Morozovska 2,E。Eliseev 3,E。Eliseev 3,D。W. Chung 4,Y. Kim 5,L。Adamczyk 5,R。E. E. Garcia 4,N。Dudney 5和N.Dudney Internal Interge Nation Interge N.实验室,田纳西州橡树岭,美国37831,2,乌克兰国家科学学院半导体物理研究所,乌克兰41,PR。nauki,03028乌克兰,乌克兰3,材料科学问题研究所,乌克兰国家科学学院,乌克兰3,乌克兰3,Krjijanovskogo,Krjijanovskogo,03142基辅,乌克兰,乌克兰,4材料工程学院,Purdue University,Purdue University,Purdue University,Purdue University,West Lafayette田纳西州37831,美国。实现Li进出阴极的运动是新电池设计的关键组成部分,但由难以识别的纳米级工艺主导。我们开发了一种基于扫描探针显微镜的方法,电化学应变显微镜(ESM),以研究薄膜licoo 2电极材料中的电偏置诱导的锂离子传输。ESM利用了偏置控制的锂离子浓度和电极材料摩尔体积之间的固有联系,从而为具有纳米计精度的新型研究提供了能力。使用ESM,可以在相关的长度尺度上研究局部电化学过程,以揭示结构,功能和液压电池性能之间的复杂相互作用。这项工作表明了如何使用ESM来研究分层阴极材料(例如Licoo 2)中的锂离子运输。N.B.N.B.通过其分层结构,锂离子传输和相应的体积变化很大程度上取决于Licoo 2晶粒的晶体学方向。使用ESM,可以鉴定具有增强锂离子动力学的晶粒和晶界。显着性的可再生能源需求日益增长与对当前未按照许多应用所需的性能执行的高级储能技术的需求密切相关。储能系统的功能(例如锂离子电池)基于并最终受到离子流的速率和定位,以不同的长度尺度从原子上的原子到晶粒到接口。在这些长度尺度上理解离子运输过程的根本差距极大地阻碍了当前和未来电池技术的发展。ESM的开发已经打开了以前从未达到的水平来了解锂离子电池的途径。有关用ESM获得的本地锂离子流的独特信息将不可避免地导致电池应用材料开发的突破。了解离子流,材料属性,微结构和缺陷之间的相互作用是电池操作的关键,可用于优化设备属性并了解电池褪色过程中发生的情况。信用研究是作为流体界面反应,结构和运输(第一)中心的一部分,这是一个能源边界研究中心,由美国能源部基本能源科学办公室资助,基础能源科学办公室,奖励编号ERKCC61(N.B.,L.A.,L.A.R.E.G.R.E.G.以及美国能源部基础能源科学办公室的一部分,美国能源部CNMS2010-098和CNMS2010-099(N.B.,S.J。)。还承认亚历山大·冯·洪堡基金会。和D.W.C.感谢NSF Grant CMMI 0856491的支持。“纳米尺度的电化学插入和锂离子电池材料的扩散映射” N。Balke,S。Jesse,A。N. Morozovska,E。E. Eliseev,D。W. Chung,Y。Kim,Y。Kim,L。Adamczyk,R。E. E.García,N。Dudney和S.V.kalinin,nat。纳米技术。5,749-754(2010)。5,749-754(2010)。
微电极阵列提供了记录对大脑研究至关重要的电生理活动的方法。尽管它起着根本性的作用,但没有办法定制电极布局以满足特定的实验或临床需求。此外,目前的电极在覆盖范围、易碎性和成本方面存在很大局限性。使用克服这些局限性的 3D 纳米粒子打印方法,我们展示了利用 3D 打印过程灵活性的电极的首次体内记录。可定制且物理上坚固的 3D 多电极设备具有高电极密度(2600 个通道/cm 2 面积),组织损伤最小,信噪比极佳。这种制造方法还允许灵活的重新配置,包括不同的单个柄长度和布局,具有较低的总通道阻抗。这在一定程度上是通过定制的 3D 打印多层电路板实现的,这本身就是一项制造进步,可以支持多种生物医学设备的可能性。这种有效的设备设计可以实现整个大脑的有针对性和大规模电信号的记录。
Miloslav Steinbauer 1 , Roman Pernica 1 , Jiri Zukal 1 , Radim Kadlec 1 , Tibor Bachorec 1 , Pavel Fiala 2 1 Brno University of Technology, Department of Theoretical and Experimental Electrical Engineering, Brno, Czech Republic 2 Brno University of Technology, SIX Research Center, Brno, Czech Republic Abstract.我们讨论电磁,基于碳的周期性结构的数值建模,包括石墨烯,石墨烷,石墨和绘画。这些材料适用于亚微米传感器,电线和其他应用,例如生物医学,光子学,纳米和光电子的应用;除了这些域和分支外,适用性还扩展到例如现代智能元素的微观解决方案。所提出的经典和杂交数值模型基于分析具有高可重复性的周期性结构,它们利用了具有其基本维度的碳结构的概念。模型可以模拟谐波和瞬态过程;能够评估电荷作为虚假信号来源的实际随机运动;并考虑沿结构的谐波信号传播的参数。从分析获得的结果可用于基于碳周期结构的传感设备的设计,并用于血浆发生器的实验中。的目的是提供更广泛的概述专门的纳米结构建模,或者更具体地说,概述可用于评估沿结构表面传播的模型。
先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
生长的纳米管的物理特性取决于石墨烯结构,其中碳原子以圆柱形形状排列。使用Biovia Materials Studio中的显示和表面创建工具检查了TMNP催化剂表面对最终石墨烯结构的模板效应。已经表明,铁(Fe)和钴(CO)的(111)平面的晶格常数和对称性与镍(Ni)的(1-10)平面匹配SWNT石墨烯结构。这表明(111)表面包含Fe和Co纳米颗粒区域,并且(1-10)表面包含Ni区域,并且可以种植其手性的SWNT,其性质可以种植。
结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
特邀演讲嘉宾/小组成员:Debbie G. Senesky(斯坦福大学)、David Gottfried(佐治亚理工学院)、Mihail Roco(NSf)、Mary Tang(斯坦福大学)、Branden Brough(NNCO)、James Moore(NSF EHR 理事会)、Melissa Cowan(英特尔)、Jeffrey Miller(Kavli 基金会)、Victor Zhirnov(半导体研究公司)、Cherie Kagan(宾夕法尼亚大学)、Nadia Carlsten(SandboxAQ)、Jared Ashcroft(微纳米技术教育中心)、Rae Ostman(国家非正式 STEM 教育网络)、Tavarez Holston(佐治亚皮埃蒙特技术学院)、Holly Leddy(杜克大学)、Landon Loeber(美光科技)、Lora Weiss(芯片研发计划办公室)、Barry Johnson(NSF-TIP)、Richard Schneider(谷歌)、Ira Bennett(亚利桑那州立大学)、Vijay Narasimhan(EMD 电子), Raymond Samuel(北卡罗来纳州立农业技术大学)、Philip Hockberger(Waymaker Group)、Christopher Gourlay(澳大利亚国家制造工厂)、Michael Spencer(摩根州立大学)。
