COVID-19 大流行表明病毒性疾病如何使社会陷入瘫痪,并强调了疫苗和保持社交距离在预防此类疫情方面的重要性。有趣的是,类似的疾病防御机制不仅在人类身上观察到,在蚁群生活昆虫(如蚂蚁沙蜂)中也观察到。在本研究中,我们旨在探索蚁群的个体和社会免疫力。在个体层面,通过用大肠杆菌感染蚂蚁来诱导抗菌肽 (AMP)。使用纸片扩散试验测量抗菌活性,并使用 SDS-PAGE 分析 AMP 的分子量。然而,实验在肽检测方面得出了不确定的结果。在对个体免疫的实验之后,我们进行了一项研究来观察蚁群的社会免疫力。蚁群表现出复杂的社会行为,有助于它们对病原体的集体免疫。这项研究旨在调查日本弓背蚁如何应对铜绿假单胞菌感染。我们建立了两个蚁群,每个蚁群都有一只蚁后。实验组接触铜绿假单胞菌,对照组未感染。我们追踪了个体和群体水平的活动、蚁后的行为变化以及死亡个体的位置。受感染的蚂蚁和群体表现出活动水平降低,我们观察到死亡蚂蚁被隔离。虽然这项研究仅限于两个群体,但进一步的研究有望有助于更深入地了解蚂蚁群体的免疫系统和感染反应机制。
首先,我要向在大学期间与我共度时光的所有同事表示敬意,特别是 Ana Mar'ıa、Alberto 和 Para'ıso。我在马德里的第一天遇到了她,后来又遇到了其他人,但他们在我最后几年的不同阶段都发挥了重要作用。如果没有他们的关注和无条件的支持,这条漫长的道路会更加艰难。我还要感谢 Cristina 的考虑,因为如果没有她的建议,这篇论文的题目会有所不同。显然,我不能忽视我一生中家人的鼓励。他们对我决定的支持一直是不可否认的。我所取得的成就几乎都归功于你们和你们的教育,因此这篇论文很大一部分是你们的功劳。我也很幸运和自豪能与航空航天飞行器系的 Crist'obal 和 ' Alvaro 一起工作。他们将我和我的同学带入了研究领域,并激发了我们在工程领域的创造潜力。我也非常感谢他们分享了他们在预测、估计或神经网络等领域的大量知识。最后但并非最不重要的是,我必须对 GAMESA 公司及其所有员工表示感谢,感谢他们在该项目开发期间的接待、帮助和建议。特别要感谢 Enrique,他的技术援助和支持对于与风力涡轮机行为相关的几个方面至关重要。此外,他还负责本报告的修订,他的意见丰富了本文并使其更加连贯和易于理解。当然,我忘记了很多值得在这页小纸片上占据大篇幅的人。遗憾的是,我必须结束这篇文章,因为这份报告必须在几个小时内送到复印店。对于那些出现在这里的人和那些应该出现在这里的人:谢谢。
抽象的城市化区域是提供有趣数量的木材废物以作为可再生资源来解决的空间。由于这些区域的工作空间有限,因此使用了小的低功率木芯片。机器具有相似的功率,但市场上有不同的切割机制。本文介绍了四个具有四种不同切割机制的机器的研究:盘,鼓,两个圆柱和flail。根据janka分类的三种木材(灰,松树,云杉)的木制束,其硬度不同,十个横截面尺寸从10×10 mm到100×100毫米,以及10±2%的水分含量(MC)。在经过测试的机器中停止工作机构引起了V带传输的滑倒,从而保护了机器免受过载后果的影响。表明,在碎屑能力,鼓,圆盘,两个圆柱体和flail芯片方面,表现出最高和最低功能。根据木材类型和切割的机构,被测试机器切碎的材料范围从80×80 mm到10×10 mm。测试机器的平均能耗为2.07±0.73 kWh,滚筒芯片芯片记录的最大值为5.21±0.2 kWh。木材和横截面是能源消耗的关键因素,而削纸片模型的影响很小。考虑到化石燃料发电期间的平均排放为0.95千克CO 2每1 kWh,这些机器的产生从0.5千克CO 2 H -1至最大4.49 kg CO 2 H -1(平均1.97 kg CO 2 H -1)。假设一棵树每年从7千克CO 2吸收,则可以假设一棵树可从一年中的3个小时的机器工作中减少CO 2排放。这是一段时间要短得多,要比碎裂经过修剪过程的单个树的分支所需的时间要短得多。这允许维持正CO 2的降低平衡。
脑心浸液肉汤 – DM106 简介 MAST ® 脑心浸液肉汤是一种用于培养难培养生物的多功能液体培养基。该培养基的高营养成分包括脑心浸液固体、酪蛋白胰消化物、葡萄糖、蛋白胨、酵母提取物和氯化钠。 MAST ® 培养基以脱水粉末形式提供,可让最终用户制备适合细菌和真菌培养的培养基。它适合在各种容器中制备,并且容量可满足最终用户的预期用途。细菌和真菌种类的培养对于常规临床实验室目的至关重要。仅供体外使用,不可用于诊断人类疾病 预期用途 MAST ® 脑心浸液肉汤脱水培养基粉末用于生产多功能液体培养基。按照使用说明制备时,它会产生一种用于非选择性富集难培养生物的液体培养基。脑心浸液肉汤旨在与其他体外测试结合使用,例如通过肉汤培养法制备用于 Kirby-Bauer (CLSI) 纸片扩散敏感性测试的接种物。它旨在供专业、经过培训的临床实验室用户用于体外使用,不用于诊断人类疾病或其他状况,或作为治疗或病例管理决策的基础。测试原理培养基仍然是活细菌和真菌细胞生长和分离的黄金标准。使用无菌环将目标生物接种到液体培养基中,并悬浮在准备好的肉汤中(肉汤悬浮液)。肉汤悬浮液应在适合目标生物的大气条件和温度下孵育,此后培养基将变浑浊,表明有生物生长。这些方法应与其他体外设备结合使用,以辅助诊断。一旦制备好,一份培养基肉汤只能一次性使用,不能重复使用。
伊拉克卡拉尔区临床分离细菌的研究 Dlawar Qania Ali,伊拉克卡拉尔加尔米安理工大学卡拉尔技术学院医学实验室技术系 电话:+9647736959087 Dlawer.qani@gpu.edu.iq Dlawarqanah@gmail.com https://orcid.org/0009-0000-4655-4912 摘要:背景:多重耐药 (MDR) 细菌对全球公共卫生构成重大威胁,使治疗策略复杂化并导致高死亡率。在主要病原体中,金黄色葡萄球菌和铜绿假单胞菌对多种抗生素表现出强大的耐药性,因此必须探索替代治疗方案。喜来芝是一种源自喜马拉雅山和其他山区的传统药用物质,因其多种生物活性(包括抗菌特性)而备受关注。目的:本研究调查了喜来芝水提取物对伊拉克卡拉尔区临床分离的 MDR 金黄色葡萄球菌和铜绿假单胞菌菌株的潜力。方法:使用纸片扩散法和肉汤微量稀释法评估抗菌效果。使用单因素方差分析确定统计学意义。所有实验均重复进行三次,p < 0.05 被认为具有统计学意义。结果:结果表明,在浓度高于 25 mg/mL 时,金黄色葡萄球菌有显著抑制作用,而对铜绿假单胞菌无活性。这些发现强调了喜来芝作为天然资源在抗生素耐药性日益受到关注的情况下开发替代疗法的潜力。结论:喜来芝对金黄色葡萄球菌的功效凸显了其作为有针对性的治疗选择的前景,倡导进一步探索其机制并更广泛地应用于对抗抗生素耐药性感染。建议:应考虑以鼓励使用喜来芝和类似天然产物为重点的预防计划。建议进一步研究探索喜来芝抗菌活性的机制并评估其在临床环境中的疗效。
摘要 由于大多数垃圾场缺乏渗滤液收集机制,废物被认为是土壤病原体的来源。本研究旨在检测垃圾场土壤中的微生物,并测试检测到的微生物对选定抗生素的敏感性。土壤样本是从尼日利亚奥约州奥格博莫索的五个独立垃圾场收集的。从收集的土壤样本中分离出八种细菌和八种真菌。使用传统的纸片扩散法对从收集的土壤样本中提取的细菌和真菌进行抗生素敏感性测试。结果表明,真菌分离株的微生物负荷在 1.7 到 4.8 x 10 5 CFU/g 之间变化,而细菌种群的微生物负荷在 1.0 到 8.0 x 10 5 CFU/g 之间变化。垃圾填埋场土壤样品中检测到的真菌分离物有链格孢菌、白色念珠菌、红酵母、尖镰孢菌、黄曲霉、塔玛曲霉、镰刀菌和指状青霉,细菌分离物有枯草芽孢杆菌、蜡状芽孢杆菌、表皮葡萄球菌、梭状芽孢杆菌、醋酸杆菌、大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。检测的细菌种类对头孢呋辛完全耐药,但对庆大霉素和氧氟沙星完全敏感。在不同剂量下,真菌分离株对灰黄霉素、伊曲康唑和酮康唑表现出耐药性和敏感性。根据这项研究的结果,庆大霉素和氧氟沙星等抗生素应被视为预防土壤传播的革兰氏阳性菌和革兰氏阴性菌感染的第一道防线 关键词:垃圾、垃圾场、土壤、微生物、抗生素耐药性。 引言在尼日利亚以及许多其他发展中国家,城市和农村地区都受到垃圾、塑料、瓶子、一次性杯子、废弃轮胎甚至人类和牲畜排泄物等废物的困扰。许多垃圾场,特别是在中低收入国家,缺乏适当的基础设施和资源来有效地管理废物,导致不受控制的倾倒和环境恶化(Mor 和 Ravindra,2023 年)。这些废物在视觉上不美观,会产生难看的景观,并散发出难闻的气味,特别是当它们的有机成分被腐烂细菌分解时(Gadallah,2016 年)。垃圾场的微生物群落通过有氧和厌氧分解、发酵和产甲烷等过程促进有机物的降解和转化(El-Saadony 等人,2023 年)。然而,
大豆酪蛋白消化培养基(胰蛋白胨大豆肉汤)预期用途大豆酪蛋白消化培养基是一种通用培养基,用于分离和培养多种苛刻和不苛刻的微生物。摘要大豆酪蛋白消化培养基 (SCDM) 广泛用于从环境来源培养微生物,支持多种微生物的生长,包括常见的需氧、兼性和厌氧细菌和真菌。它还用于制备用于菌落计数的生物稀释液和制备用于纸片扩散和稀释抗菌敏感性测试的标准接种物,如国家临床实验室标准委员会 (NCCLS) 所标准化。该培养基用于无菌测试,以检测低发生率真菌和需氧细菌的污染,并用于进行微生物限度测试。它用于大肠杆菌噬菌体检测程序,这是《水和废水检验标准方法》中的一种方法。大豆酪蛋白消化琼脂和培养基被收录在食品和化妆品检测的细菌分析手册以及牛奶、水和废水和食品检验方法纲要中。原理胰蛋白胨和大豆蛋白胨的组合使培养基营养丰富,为微生物的生长提供含氮、含碳物质、氨基酸和长链肽。葡萄糖作为碳水化合物来源,磷酸二钾缓冲培养基。氯化钠维持培养基的渗透平衡。配方*成分 g/L 胰蛋白胨 17.0 大豆蛋白胨 3.0 氯化钠 5.0 葡萄糖 2.5 磷酸二钾 2.5 最终 pH(25°C 时) 7.3 ± 0.2 *根据性能参数进行调整。储存和稳定性将脱水培养基储存在密闭容器中,温度低于 30ºC,将配制好的培养基储存在 2ºC-8ºC 下。避免冷冻和过热。请在标签上的有效期前使用。开封后保持粉末培养基密闭以避免水合。样本类型 水和废水样本;药物样本;食品和奶制品样本。样本采集和处理确保所有样本都贴有正确的标签。按照既定指导方针采用适当的样本处理技术。某些样本可能需要特殊处理,例如立即冷藏或避光,请遵循标准程序。样本必须在允许的时间内储存和测试。使用后,被污染的材料必须经过高压灭菌后才能丢弃。使用方法 1. 将 30.00 克粉末悬浮于 1000 毫升纯净水/蒸馏水中。 2. 充分混合。 3. 经常搅拌煮沸以完全溶解粉末。 4. 按照验证的周期在 121°C (15 psi) 下高压灭菌 15 分钟。
尼日利亚扎里亚 SHIKA 艾哈迈杜贝洛大学教学医院患者伤口相关细菌的分离、鉴定和抗生素敏感性模式* Abdullahi B. 和 Lawal FB 尼日利亚扎里亚艾哈迈杜贝洛大学微生物学系 *通讯作者 电子邮箱:albishir13@gmail.com 电话:+2348054527359 摘要 伤口感染会影响生活质量,并降低伤口愈合率。本研究旨在从伤口中分离细菌并确定其抗生素敏感性模式。共采集了尼日利亚扎里亚艾哈迈杜贝洛大学教学医院伤口患者的 100 份伤口拭子样本。对样本进行培养,并使用生化测试鉴定所得分离物。使用琼脂纸片扩散法对鉴定出的细菌进行抗生素敏感性试验。在收集的 100 个伤口样本中,有 43 个感染了细菌;导致细菌性伤口感染的总患病率为 43%。在 43 种分离的细菌中,58.1% 为金黄色葡萄球菌,18.6% 为克雷伯氏菌属,而 23.3% 被鉴定为假单胞菌属。女性患者细菌性伤口感染的患病率(47.3%)高于男性患者(37.8%)。21-40 岁年龄组的感染患病率最高(48.3%),10-20 岁年龄组的感染患病率最低(33.3%)。所有风险因素均与感染无显著相关性(p>0.05)。所有分离株对氧氟沙星均 100% 敏感。所有分离株对青霉素均 100% 耐药。所有假单胞菌属均为 100% MDR。金黄色葡萄球菌是最常见的细菌,氧氟沙星是治疗伤口感染的首选药物。关键词:伤口;细菌感染;抗生素敏感性;MDR 简介伤口是皮肤破裂并因皮肤完整性丧失而暴露的皮下组织,为微生物的定植和增殖提供了潮湿、温暖和有利的环境(Esebelahie 等人,2013 年)。皮肤容易受到伤害、划伤并与外界环境接触,因此更容易受到病原体的定植(Simões 等人,2018 年)。由于伤口定植最常见的是多种微生物,涉及可能致病的不同微生物,因此任何伤口都存在感染的风险(Simões 等人,2014 年)。患者所呈现的伤口因情况而异,包括急性手术伤口、意外事故后发生的创伤性伤口、烧伤伤口或慢性伤口,如糖尿病足、腿和压疮。所有伤口都受到微生物的污染,这些微生物是皮肤腐生菌群的一部分,这些微生物的类型和数量因伤口而异(Cooper 和 Lawrence,1996 年)。
