广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
摘要酸奶是由于其营养和健康益处而在全球范围内非常重要的发酵乳制品。这项研究的目的是将乳液乳清混合物的生物转化为酸奶和阿罗尼亚(Aronia Melanocarpa)补充。嗜热链球菌和乳杆菌Delbrueckii亚种。保加利亚被用作对照和功能性酸奶产生的微生物。样品在整个冷藏过程中都根据纹理指数以及纹理和感觉特性进行分析。使用排水法确定协同指数,并从样品的纹理分析中获得纹理参数。感觉评估用于评估消费者接受和对功能性酸奶感觉特性的反应。功能性酸奶表达在存储过程中的传递指数差异,并且明显高于第21天对照酸奶。在存储期间,样品的纹理特性相似。在功能性酸奶中观察到硬度,粘合性和胶粘性的更高的凝聚力和弹性值以及较低的值。结果表明,颜色和味道对酸奶没有统计学上的显着影响。根据酸奶品质的评估,在存储的最后一天,乳清分离水平在存储的最后一天有很大差异。液体乳清成生物转化为功能性酸奶提供了乳清价化技术,可促进人类健康和环境可持续性。
图 2:a) 还显示了 0-3 at.% W 掺杂 SnO 2 薄膜的 XRD 图案以及锡石相中 SnO 2 的计算图案。b) (211) 峰的放大图,显示在 SnO 2 中 W 替换后没有明显的偏移。c) 导电性最强的薄膜 (1.5 at.% 掺杂 W: SnO 2 ) 的 La Bail 拟合。d) SnO 2 薄膜中不同 W 浓度下纹理系数的变化,其中纹理系数值高于 1 表示该平面优先生长。
Thermapro™ 隔热分段门厚度为 3 英寸,采用压力注入的无氟聚氨酯泡沫,计算出的 R 值为 25.8。CHT-850 型号采用钢化铝面板,具有 24 号规格的灰泥纹理,内外侧带有 V 型槽。CHT-832 型号采用镀锌钢面板,外侧面为 20 号规格的齐平光滑表面,内侧面为 26 号规格的木纹纹理,带有 V 型槽(内侧面 20 号规格为可选)。CHT-816 型号采用镀锌钢面板,具有 26 号规格的木纹纹理,内外侧带有 V 型槽。分段接头为榫槽接头,可抗风。分段具有 16 号规格钢制端立柱和全垂直钢制背板,可增加强度,并具有坚固的表面硬件连接点。
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。
微米和纳米尺度的形貌对表面功能有重大影响。自然界的进化发展出了优化的表面纹理,这些纹理对润湿性、摩擦力、粘附力和视觉外观具有先进的影响,以确保生存。[1,2] 尤其是,许多动物和植物的明亮和闪亮的颜色往往源于光从其表面复杂的周期性结构中衍射。[3] 理解和控制结构色的表面几何形状是材料科学、化学和物理学领域许多研究工作的主题,旨在通过改进衍射光栅的设计和制造,制造具有先进光学和色度功能的人造光调制装置 [4–8]。[9,10]
超越了具有复杂几何形状的零件的近网形制造,添加剂制造(AM)使得可以制造具有独特的特定地点微观结构的材料。此功能是AM独有的,并且可以使以前无法实现的构建材料的设计。在这里,我们利用此策略将数据用微结构作为存储信息的介质将数据编码为金属零件。我们使用一种新型的激光扫描技术来控制激光粉末床融合过程中的局部固化条件,并将线性条形码和快速响应(QR)代码嵌入不锈钢316 L.使用不同晶体学纹理的块。数据可以通过对局部微观结构敏感的分析技术来检索数据。作为演示,我们通过使用称为方向反射显微镜的技术从其蚀刻表面测量光光的散射来解码条形码。所产生的纹理图可以通过传统的条形码扫描仪可读,例如手机上的纹理图。嵌入数据的能力在执法,生物医学和运输等领域具有巨大的潜力,在执法,生物医学和运输中,永久耐损害的跟踪至关重要。