al。报道说,与TIO 2的68 pm相比,银离子的半径较大130 pm,因此Ag颗粒保留在表面,从而阻止了相变[18]。随着AG浓度的增加,位错密度也会增加。脱位密度可以通过使用公式σ= 1/d2线/NM2确定。在图5中,衍射峰在25.63°,44.54°,64.79°和77.96°上分别对应于(101),(002),(312)和(103)的平面,这代表了钛群的养育酶阶段的形成。分别在38.29°和47.6°下看到金红石相的峰值,这与(211)和(303)(PDF编号01-083-2243)相关。在77.76O和82.19O处金属银的图5-D衍射峰中,并用(022)和(222)的晶体平面生产,这些峰通过(PDF Number 01-073-1774)证实。
1石油与化学工业的生物质基于生物质的材料,化学工程学院,化学与药房,化学与环境工程学院,武汉理工学院,武汉430205,中国; Little_ben2002@163.com(X.Y。); Hezhenwork@126.com(Z.H.); 17371087162@163.com(L.J.); 18154351008@163.com(H.C.)2材料与环境工程系,成都技术大学,成都611730,中国3湖转换式煤炭转换和新碳材料的主要实验室,化学与化学工程学院,武汉科学与技术大学,乌汉尼大学430081,中国武汉大学,武汉大学430081,中国; wuling2018@wust.edu.cn 4高级材料教育部材料科学与工程学院的主要实验室,中国北京100084,北京大学; zhhuang@tsinghua.edu.cn *通信:lqlxp10@163.com(q.l.); wangmx14@wit.edu.cn(M.W。);电话。: +86-27-87195680(M.W。)
介绍基于其起源和特征,皮肤伤口可以分为两种主要类型。首先,急性伤口来自各种情况,包括手术程序,创伤事件,辐射暴露,擦伤和浅表烧伤。另一方面,由于糖尿病性溃疡,由于固定性的长时间以及与静脉功能不全有关的静脉溃疡而导致的糖尿病性溃疡,压力性溃疡,导致慢性伤口。1这些类型之间的适当差异对于提供量身定制的护理和有效的管理策略至关重要,以最大程度地提高伤口愈合结果。为了促进细胞生长并促进有效的愈合,必须执行清创术以去除伤口中的任何碎屑或受损的组织。随后细心的清洁和擦拭
在精确医学领域中,制造技术的进步对于增强医疗设备的能力,例如纳米/微型机器人,可穿戴/植入的生物传感器以及芯片系统,这些功能对于准确获取和分析患者的物理病理学信息和患者特种治疗。静电纺丝在高级医疗设备的工程材料和组件中具有巨大的希望,这是由于展示了纳米材料科学发展的能力。尽管如此,诸如有限的组成品种,不可控制的纤维取向,融合脆弱的分子和细胞的困难以及低生产有效性等挑战阻碍了其进一步的应用。为了克服这些挑战,已经探索了先进的静电纺丝技术来制造功能复合材料,精心策划的结构,生活结构和扩大规模的制造。本综述深入研究了静电纺丝技术的最新进展,并强调了它们在介绍常规电纺丝技术的基本信息之后,在彻底改变精确医学领域的潜力,并讨论当前的挑战和未来的观点。
通过在旋转平台和移动平台之间施加电场,直接撰写的静电纺丝(DWE)将对添加剂制造(AM)物质沉积(AM)的典型控制与电纺丝(ES)的能力(ES)结合在一起。以这种方式,DWE可以控制纤维沉积和捏造复杂的纤维结构,这些结构具有挑战性,可以通过ES获得,并更真实地复制生物组织相对于AM的纯净结构。此外,如果与细胞 - 电纺丝旋转相比,DWE并不意味着直接嵌入墨水中的细胞,在使用电压差异并直接与通常用于静电纺丝的溶剂直接接触[1] [1]时,它可以经过死亡,但它能够达到高结构分辨率,而无需损害较高的细胞不可损害。要控制DWE中的文件沉积,将电纺射流保持在其笔直区域是必不可少的,这可以通过近距离电纺(NFES)或熔体电动(MEW)获得。与传统的静电纺丝相比,没有鞭打阶段会导致通常更大的直径,但与其他广泛使用的挤出技术相比,较小的持续阶段(
纳米技术是研究结构尺寸在1~100纳米范围内的材料性能与应用的科学技术。1981年扫描隧道显微镜发明后,长度为1~100纳米的分子世界诞生了,其最终目的是用原子或分子直接构筑具有特定功能的产品,因此纳米技术是一种利用单个原子或分子制造材料的技术。纳米技术是一门交叉学科和综合学科,研究内容涉及现代科学技术的广阔领域。纳米科学与技术主要包括七个相对独立又相互渗透的学科(纳米系统物理、纳米化学、纳米材料、纳米生物学、纳米电子学、纳米加工和纳米力学)和三个研究领域(纳米材料、纳米器件和纳米尺度检测与表征)。纳米材料的制备与研究是整个纳米技术的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,纳米电子学是纳米技术的最重要内容。
静电纺丝是一种非常通用且具有成本效益的技术,以其在具有膨胀表面积的生产多孔纤维中的简单性和灵活性而闻名。该技术的灵活性可以创建具有不同结构和脚手架的纳米纤维。这些纳米纤维有时在应用之前受到热处理。它们的独特特征使它们非常适合集成到储能系统中。在电池等能源储能系统的领域中,存在锂离子电池以外的替代品的压力需求。多价电池,例如Al-Ion,MG-ION,Zn-ION和CA-ION电池,由于其有利的特性,它代表了一个合适的选择。由于其多孔性质,电纺纤维促进离子转移,增强电荷/放电过程并改善电池动力学。在本文中,我们将研究如何在多价电池阴极中使用电纺纤维,并揭示它们为这些电池系统提供的额外优势。最后,将进行全面的评估,以评估该技术的优势和挑战。高容量电池的前景,特别是钙离子蝙蝠Teries。
摘要:聚合物纳米纤维已成为具有生物医学应用的制作结构的迷人介质。旋转方法在医疗应用和神经组织工程的背景下引起了很大的关注,最终导致了聚合物纤维的产生。与聚合物微纤维相比,具有纳米尺度直径的聚合物纳米纤维可提供明显更大的表面积,从而促进了增强的表面功能化。因此,聚合物纳米纤维垫目前正在对无数应用程序进行严格评估,包括过滤器,组织工程的脚手架,防护设备,复合材料中的加固和传感器。本评论对聚合物纳米纤维处理和表征的最新进步提供了详尽的概述。此外,它还参与了有关研究挑战的论述,聚合物纳米纤维生产的即将发生的发展以及多种多样类型及其应用。静电纺丝已用于将广泛的聚合物转换为纳米颗粒纳米纤维,这可能是唯一具有工业生产潜力巨大潜力的方法。这些旋转技术的基础是探索了生物医学用途以及用于药物输送,疾病建模,再生医学,组织工程和生物传感的纳米结构纤维的基础知识。
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
人体组织(例如肌肉、血管、肌腱/韧带和神经)具有纤维状束状形态,束内细胞和细胞外基质 (ECM) 以特定的 3D 方式有序排列,协调细胞和 ECM 发挥组织功能。通过利用新兴的“自下而上”生物制造技术将细胞纤维(含有活细胞的纤维)设计为活体构件,现在可以在体外重建/再造纤维状束状形态及其时空特定的细胞-细胞/细胞-ECM 相互作用,从而实现这些纤维组织的建模、治疗或修复。本文简要回顾了可用于制造细胞纤维的“自下而上”生物制造技术和材料,重点介绍了能够有效、高效地生产细细胞纤维的静电纺丝技术,以及通过适当设计的工艺,模拟天然纤维组织的 3D 细胞载运结构。强调了细胞纤维作为药物测试、细胞治疗和组织工程等领域的模型、治疗平台或组织类似物/替代品的重要性和应用。讨论了在高级层次结构和天然组织复杂动态细胞微环境的仿生学方面面临的挑战,以及细胞纤维在众多生物医学应用中的机会。