vildagliptin(Vd)和dapagliflozin(DP)通过RP-HPLC使用紫外线(UV)检测器同时确定,Hypersil Gold C18(250×4.6 mm)列(250×4.6 mm)列,5 µm,5 µm和乙腈的流动相:与O-phostocior Acthocior Acter-phostocior Acthoce/ph 3)一起调节。选择估计波长为213 nm。VD和DP的保留时间分别为2.9分钟和8.3分钟。Q2(R1)在验证过程中遵循ICH指南。VD和DP相关系数R 2值分别为0.9993和0.999。虽然DP的线性范围为1至6 µg/ml,但VD为10至60 µg/ml。精度和准确性研究表明,%相对标准偏差(%RSD)低于2%。恢复%被评估以满足ICH Q2(R1)指南标准。对强制降解的提出的研究表明稳定性表明研究。调查结果还表明,建议的方法适合精确,准确地确定VD和DP。关键字:Vildagliptin,Dapagliflozin,强制退化研究,验证。国际药物输送技术杂志(2024); doi:10.25258/ijddt.14.3.49如何引用本文:Deshmukh SB,Wagh PA,Yadav SS,Mane MB。稳定性指示HPLC方法的开发和验证,以同时确定药物剂型中的Vildagliptin和dapagliflozin。国际药物输送技术杂志。2024; 14(3):1599-1603。支持来源:零。利益冲突:无
模仿学习(IL)旨在通过从演示中学习来模仿专家在顺序决策任务中的行为,并已广泛应用于机器人技术,自动驾驶和自动回归文本生成。最简单的IL方法是行为克隆(BC),被认为会导致样本复杂性,并对问题视野的不利二次依赖性依赖,激发了各种不同的在线算法,这些算法在对数据的更强假设以及学习者访问专家的访问方面具有改进的线性范围依赖性。我们从学习理论的角度重新审视了离线和在线IL之间的明显差距,重点是可实现的/良好的设置,其中包括一般政策类别,包括深层神经网络。通过对对数损失的行为克隆进行新的分析,我们表明,只要(i)控制累积回报的范围,并且(ii)控制政策类别的监督学习复杂性的适当概念。将我们的结果专门用于确定性的固定策略,我们表明,离线和在线IL之间的差距比以前想象的要小:(i)可以在密集的奖励下实现离线IL的线性依赖性(与以前仅在线iL中可以实现的知识相匹配); (ii)在政策类别的情况下,在线IL也无法随着对数损失的影响,即使在Manign MDP中也无法改善离线IL。我们通过对标准RL任务和自回归语言生成的实验来补充我们的理论结果,以验证我们发现的实际相关性。
在这项工作中,具有纳米特征的纳米结构导电膜是通过激光组装而直接产生的,并将其整合到完整的硝基纤维素传感器中。纤维素底物允许托管活细胞,而纳米结构膜的纳米酶活性可确保sames释放的无酶实时检测过氧化氢(H 2 O 2)。详细说明,使用CO 2 -Raser绘图仪通过同时还原和模式的氧化石墨烯和铂阳离子来生产高度去角质的氧化石墨烯3D膜3D膜,该薄膜用裸铂纳米烟饰面。将纳米结构膜集成到硝酸纤维素底物中,并使用负担得起的半自动打印方法制造完整的传感器。直接H 2 O 2测定的线性范围为0.5 - 80μm(r 2 = 0.9943),检测到0.2μM。实时细胞测量值是通过将传感器放置在培养基中,确保其在传感器表面上的粘附;两种细胞系分别用作非肿瘤(VERO细胞)和肿瘤(SKBR3细胞)模型。对用佛波酯刺激细胞释放的H 2 O 2的实时检测;硝酸纤维素传感器返回了有关H 2 O 2的现场和实时定量信息,以证明有用的灵敏度和选择性,从而区分了肿瘤细胞。提出的策略允许使用简单的台式仪器进行低成本的串行串行序列半自动生产,从而铺平了对癌细胞细胞病理学状态的简单且负担得起的监测的道路。
异丙嗪(PHZ)被用作兽医中的镇静剂,其残留物可能威胁到人类的健康。PHz的电化学检测是适合在该领域应用的方法。然而,由于基质干扰,传统的电分析很难直接在肉样品中进行。这项工作将磁性固相提取和差异脉冲伏安法整合,以高度敏感和选择性地确定牛肉和牛肉肝脏中的PHZ。COFE 2 O 4 /用C 18功能化的介孔二氧化硅(mg@msio 2 -c 18)涂有含量的石墨烯,合成为分散的磁吸附剂以提取Phz。用氮掺杂的空心碳微球(HCM)修饰的磁性玻璃碳电极通过PHz吸引Mg@MSIO 2 -C 18,并直接检测PHZ而无需洗脱程序。mg@MSIO 2 -C 18可以分离PHz,以避免杂质在引起检测时的干扰,并在磁电上集中PHZ。此外,使用HCM的电极修饰可以扩增PHz的电化学信号。最后,集成的PHZ测定方法表现出较宽的线性范围从0.08μmol/L到300μmol/L,检测到9.8 nmol/l的低极限。牛肉样品分析提供了出色的恢复,这表明该方案有望在真实肉类样本中快速和现场检测PHZ©2023©2023由Elsevier B.V.代表中国化学学会和中国医学学院的Materia Medica Institute,中国医学科学院出版。
pyrochlore氧化物由于其阳离子电荷和阴离子缺乏效率而被认为是各种电化学应用的活性候选物。同时,pyrochlore的阳离子取代是改善电极材料催化活性的关键参数。在此背景下,本文旨在合成二氧化甲氧化物氧化物氧化物氧化物纳米颗粒(BI 0.6 y 1.4 SN 2 O 7; byso nps),并构建抗抗毒性氯丙嗪(CHPMZ)的电化学传感器。通过共沉淀技术进行催化剂,然后进行热处理。分析方法,例如P-XRD,FT-IR,TGA和XPS,确认了Bi3þ的成功取代。通过Fe-SEM和TEM技术分析了准备的催化剂的形态,这表明纳米颗粒的大小为⁓20E 30 nm。从CV结果中,阳离子的取代增强了CHPMZ的电催化氧化,这是由于固有活性增强而具有较大大小阳离子的替代性和pyrochlore结构的阴离子缺乏效率。此外,计算出BYSO/SPCE上CHPMZ的异质速率常数为4.49 10 3 cm/s,这表明BYSO/SPCE上CHPMZ的氧化是准可逆的。用BYSO NPS修饰的电极显示较宽的线性范围(0.01 E 58.41 m m,78.41 E 1158 m m),高灵敏度(1.03 m A/ m m/ cm/ cm 2),低检测极限为3 nm。修改的电极显示出良好的选择性,可重复性和良好的稳定性,可检测CHPMZ。©2022 Elsevier Ltd.保留所有权利。此外,构造的传感器在人类血清和尿液样品中恢复良好的实践分析中显示出令人鼓舞的结果。
为了证明开发的D-PCLIP的有用性,我们创建了DNA适体酶复合物作为DNA蛋白复合物的模型。具体而言,我们认识到人类血红蛋白(HB),这是DNA适体的疾病标志物之一,旨在使用葡萄糖氧化酶(GOX)使用化学发光来检测它。使用制备的DNA适体配合物检测到Hb,并在缓冲液和血清中确认高线性范围为6.3-50 nm(图2)。这表明可以测量临床所需的检测范围。此外,已经证实,该系统在电化学检测中的应用(可以在较短的时间内进行测量)也可以测量临床所需的检测范围。此外,为了验证D-PCLIP的多功能性,使用三种类型的DNA适体和两种酶创建了总共四种类型的DNA适体 - 酶复合物,并进行了功能评估。结果,已经证实,这两个配合物都保留了两者的功能。未来的发展:在这项研究中,我们开发了一个D-PCLIP,它可以不可逆地复杂DNA和蛋白质一对一。络合反应仅通过在4°C下进行混合而进行,从而易于生产保持这两种功能的DNA蛋白质复合物。此外,由于UDGX的DNA结合反应在DNA的乌拉西尔组中特别进展,因此可以通过调整乌拉西尔基团的位置来轻松设计蛋白质的融合位置。 D-PCLIP可以自由地更改DNA和蛋白质的组合,因此预计将在各种未来的应用中使用。例如,通过在抗体和DNA之间创建复合物,可以将其应用于诊断技术,例如免疫PCR或药物,以递送细胞特异性DNA。
使用GC-ECD进行了修改的Quechers方法,以确定pyraclostrobin,difenoconazole,dimethomorph和Azoxystrobin的多重残基,并通过GC-FPD(与S滤波器)间接确定MANEB,MANCOZEB和MANCOZEB和PROPINEB的总残留物(具有S滤波器)。同时,根据良好的农业实践(GAP)进行了现场试验,以研究其在广西省农业气候和农作物系统下残留降解的特征。每个目标峰的分离效应良好,线性范围为0.01 - 5 mg l 1,检测极限(LOD)为0.003 - 0.015 mg kg 1,量化量(LOQ)的限制为0.01 - 0.01 - 0.05 mg kg kg 1。蔬菜西红柿和樱桃番茄的平均回收范围分别为70.5 - 120.0%和70.8 - 119.8%,相对标准偏差(RSD)小于7.1%。对植物和樱桃番茄中七种杀菌剂的现场试验表明,二硫代氨基酸杀菌剂的半衰期(t 1/2)(t 1/2)(Metiram,Mancozeb和prepineb和PresineB)定义为总残留物,确定为CS 2),吡咯蛋白,二核蛋白酶,二核疫苗,以及5. difenocors,dimethobsy of 5 12.7 - 17.8,7.6 - 7.9,6.6 - 6.9和6.3 - 6.6 d分别为蔬菜西红柿。樱桃番茄的范围分别为4.3 - 4.5,10.8 - 11.8,6.7 - 7.0,5.4 - 5.5和5.9 - 6.2 d。因此,樱桃番茄可以被视为西红柿的代表性品种,以实现剩余的外推,以建立西红柿中杀真菌剂的最大残留限量(MRL)值并进行市场监测。结合最终的残基和市场监测结果,结果表明,樱桃番茄的末期残留物,初始沉积物和七种杀真菌剂的最大残留物比蔬菜西红柿高,可以在从三个市场购买的樱桃番茄中检测到这七种农药。
摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测