摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。
摘要:自发光遥感系统的应用,其中雷达图像正在迅速增长。合成孔径雷达(SAR)系统的独特性质使其成为地面变形监测、地震研究和许多摄影测量应用中最流行和适用的自发光遥感技术之一。有几种处理 SAR 数据的方法和算法,每种方法和算法都适用于不同的目的。本文开发了两种更常见和可靠的算法:距离多普勒算法和 Chirp Scaling 算法。用于处理 SAR 数据的软件包和工具箱(如 DORIS、ROI-PAC、RAT 和 PULSAR)各有优缺点。这些软件包中的大多数都在 Linux 平台上运行,难以使用,并且需要相当多的预处理数据准备。此外,没有通用的 SAR 处理应用程序可以处理所有数据类型或适用于所有目的。还有一些软件包(例如 ROI-PAC)对某些国家/地区的人们有限制。本论文的目标是使用两种更常见的算法处理 SAR 数据,对这两种算法的结果进行比较,并处理 InSAR 对图像以形成干涉图并创建 DEM。为此目的开发了一个基于 Matlab 的程序,该程序具有图形用户界面和一些可视化增强功能,有助于处理数据并产生所需的输出。然后,我研究了不同频域对结果图像的影响。我在论文中创建的程序有几个优点:它是开源的,并且非常容易修改。该程序是用 MATLAB 编码的,因此不需要大量的编程知识就可以对其进行自定义。您可以在任何可以运行 MATLAB 7+ 的平台上运行它。在这篇论文的最后,我得出结论,在 2D 频域中执行二次距离压缩的距离多普勒算法的结果与 Chirp Scaling 算法一样好,并且计算复杂度更低,耗时更少。无法引入通用的 SAR 处理算法。大多数情况下,算法需要针对特定数据集或特定应用程序进行调整。此外,最复杂的算法并不总是最好的算法。例如,对于点目标检测目的,距离和方位角方向的两个滤波步骤可以提供足够准确的结果。
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
• FMCW 收发器 – 集成 PLL、发射器、接收器、基带和 ADC – 76GHz 至 81GHz 覆盖范围,可用带宽为 5GHz – 四个接收通道 – 三个发射通道 – 基于小数 N 分频 PLL 的超精确线性调频引擎 – TX 功率:13dBm – RX 噪声系数:13dB – 1MHz 时的相位噪声:• –96dBc/Hz(76GHz 至 77GHz)• –94dBc/Hz(77GHz 至 81GHz)• 内置校准和自检 – 内置固件 (ROM) – 跨工艺和温度的自校准系统• 主机接口 – 通过 SPI 或 I2C 接口与外部处理器进行控制接口 – 通过 MIPI D-PHY 和 CSI2 v1.1 与外部处理器进行数据接口 – 用于故障报告的中断• 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助 ISO 26262 功能安全系统设计达到 ASIL-D – 硬件完整性达到 ASIL-B – 安全相关认证 • 经 TUV SUD 认证,达到 ISO 26262 ASIL B 级
引言 遥感是一种利用卫星或飞机观察地球表面各种特征的技术。随着太空传感器的进步,遥感已成为探测地球表面各种特征的有效方法。光学红外 (OIR) 遥感主要用于使用 OIR 传感器对地球表面进行成像。然而,OIR 传感器受到阳光可用性和大气条件(如雾霾和云层)干扰的限制。因此,使用微波或雷达遥感对于对地球表面进行成像非常有用。通过合成孔径雷达 (SAR) 系统进行的雷达成像扩展了微波遥感技术在各种应用中的应用。要理解 SAR 图像,需要了解电磁波与地球表面特征相互作用背后的物理现象。SAR 数据处理也不同于光学数据处理,因为它涉及许多信号处理技术。SAR 数据处理使用脉冲压缩技术、线性调频 (LFM) 概念、距离和多普勒信息以及各种其他 SAR 参数。距离-多普勒算法 (RDA) 是一种常用的聚焦 SAR 数据的技术。由于 SAR 是一种测距仪器,因此与光学图像相比,SAR 图像中的几何失真更为普遍。因此,需要使用 SAR 地理定位、地理编码和正射校正技术进行几何校正。SAR 地理定位也与光学传感器有很大不同,因为它使用距离和多普勒方程来对目标进行地理定位。