巴伦将单端信号转换为平衡信号,广泛用于射频前端模块,如倍频器、混频器等,它们利用差分信号来消除共模信号并改善端口隔离。巴伦的关键性能规格包括插入损耗、幅度/相位平衡和芯片尺寸。这些参数在毫米波 (MMW) 电路和系统的设计中非常重要 [1]。Marchand 巴伦 [2-10] 利用两个耦合线段,由于其工作带宽宽且易于实现,在 MMW 频率电路设计中得到广泛应用。在 [2] 中,提出了一种基于改进的离中心频率法的非对称宽边耦合 Marchand 巴伦。它实现了 34-110 GHz 的带宽;然而,它的插入损耗很高,平均约为 3 dB。为解决不平衡性能问题,还设计了另一种带有偏置半径线圈的30 GHz至60 GHz变压器巴伦[11]。结果显示,幅度不平衡为0.12 dB,相位不平衡小于1 ◦;但最大插入损耗约为3 dB。一种小型化片上Marchand巴伦[12]基于堆叠螺旋耦合(SSC)结构,带有自耦合补偿线和带深沟槽的中心抽头接地屏蔽,设计用于6.5 GHz至28.5 GHz的宽带工作,但测得的最大插入损耗为3 dB。宽带工作和幅度/相位不平衡一直是先前报道的文献的重点,同时以巴伦插入损耗为代价。在本文中,介绍了一种具有低插入损耗的新型Ka波段Marchand巴伦的设计,同时实现了宽带工作和可接受的不平衡性能。所提出的巴伦采用边耦合和宽边耦合组合结构来增强主信号和次信号之间的耦合,从而在 29.0 GHz 至 46.0 GHz 的 1 dB 带宽内实现了 1.02 dB 的测量低插入损耗。第 2 节介绍了巴伦的详细分析和所提出的巴伦设计,第 3 节讨论了实验结果并与最新技术进行了比较,第 4 节得出结论。
马里兰州公共服务委员会批准 Transource 案和解 决定允许两个马里兰州段继续进行,但需获得宾夕法尼亚州的批准(马里兰州巴尔的摩 - 2020 年 6 月 30 日)——马里兰州公共服务委员会已批准 Transource Maryland, LLC 申请的和解协议,该申请将建造两条从马里兰州到宾夕法尼亚州的新 230 kV 架空输电线——该提案称为独立能源连接 (IEC) 项目。有关 IEC 项目宾夕法尼亚部分的拟议和解目前正在等待宾夕法尼亚州公用事业委员会的监管部门批准。根据马里兰州和解协议的条款,Transource 将建造该项目 4.5 英里长的西部部分,从华盛顿县到宾夕法尼亚州的一个变电站。巴尔的摩燃气电力公司将建造该项目 6.6 英里长的东部部分,包括两条输电线段,从哈福德县的变电站到边界对面进入宾夕法尼亚州的变电站。该项目的哈福德县部分还将穿过巴尔的摩县的部分地区,并根据原始提案进行了重新设计,以避免使用 BGE 现有的公用事业基础设施和通行权进行绿地建设。该项目的西部和重新设计的东部部分合称为替代项目 9A。委员会在其命令中得出结论:“拟议输电线路项目的马里兰部分,经过重新配置,将解决现有和未来的区域拥堵问题,以及马里兰州和区域的可靠性需求,同时减少该项目对马里兰州农业、环境和自然资源的影响。” 2016 年,区域电网运营商 PJM 将 IEC 项目确定为缓解区域输电系统部分持续经济拥堵的解决方案。 Transource 于 2017 年向马里兰州和宾夕法尼亚州监管委员会提交了申请。“委员会发现该项目将为马里兰州纳税人带来好处,包括提高电力服务的可靠性和更容易从 PJM 的其他地方获得最低成本能源,同时也适应未来海上风电等可再生能源技术的发展,”马里兰州公共服务委员会主席 Jason Stanek 表示。
天然气亮点 • Equitrans 获得授权实施其 TP-7575 管道段废弃项目,该项目包括将 4,287 英尺的 TP-7575 管道出售给位于宾夕法尼亚州阿勒格尼县的 Peoples Natural Gas 而废弃。 • Sendero Carlsbad Gateway 获得授权在新墨西哥州埃迪县和德克萨斯州卡尔伯森县建造约 23 英里的管道和附属设施。新管道将每天从加工厂输送高达 400 MMcf/d 的天然气,以与 Agua Blanca 管道互连。 • NGPL 获得授权实施其 Lockridge 延长管道项目,包括在德克萨斯州沃德县、里夫斯县和佩科斯县建造 16.8 英里的管道和其他附属设施,以提供高达 500 MMcf/d 的稳定南向运输能力。 • Transco 获得授权建设其东南小径项目,该项目将为弗吉尼亚州和路易斯安那州提供额外的 296 MMcf/d 固定产能。该项目包括弗吉尼亚州 Fauquier 县和 Prince William 县的 7.7 英里管道环路、60,720 HP 的新压缩、放弃一些现有的压缩以及在佐治亚州、南卡罗来纳州和路易斯安那州进行的其他改造。 • Columbia Gas 获得授权建设其 Laurel Wells 废弃项目,包括放弃位于俄亥俄州霍金县 Laurel 储存场的三口注入/提取井以及相关管道和附属设施。该项目不会对现有客户或运营产生影响。 • Spire Storage West 获得授权建设 Clear Creek 项目的储存井,该项目包括将其位于怀俄明州尤因塔县 Clear Creek 储存设施的四口现有观测井改造为注入/提取井。该项目将提高 Clear Creek 储存设施的效率。 • Vector Pipeline 请求授权建造一条 1.2 英里长的水平管道,该管道将向密歇根州圣克莱尔县的新蓝水能源中心提供高达 360 MMcf/d 的稳定产能。• Southern Star Central 请求授权放弃位于堪萨斯州埃尔斯沃思县的 XW-004 线段上的交付点和相关水平管道。• ANR 请求授权其 Grand Chenier Xpress 项目,包括在路易斯安那州阿卡迪亚、杰斐逊戴维斯和卡梅伦教区的三个压缩机站和一个计量站进行设备安装和改造。该项目将增加 38,840 HP 的压缩能力,并为 Venture Global Calcasieu Pass LNG 提供 400 MMcf/d 的稳定运输能力。• ANR 请求授权放弃租约并从 Mid-Michigan Gas Storage Company 收购位于密歇根州中部奥斯汀、古德韦尔、林肯-弗里曼、洛里德和里德城存储场的某些存储资产。 • National Fuel 请求授权其 Q 线、QP 和 Queen 储存设施项目,该项目涉及修改与放弃和出售位于宾夕法尼亚州森林县和沃伦县的这些设施相关的委员会授权,以保留其中一些设施并出售其他设施。• 马里兰州哥伦比亚天然气公司请求划定一个服务区,在该服务区内,该公司可在未经委员会进一步授权的情况下扩大或扩展其设施,以便将天然气从宾夕法尼亚州萨默塞特县的交货点输送到州界对面的马里兰州。• 南方之星公司请求授权放弃位于堪萨斯州安德森县南韦尔达油田的 SW #70 井和 SWB #21 井及相关基础设施。放弃这一决定不会影响油田的认证参数或对客户的服务。• 南方天然气中央公司请求授权放弃位于密西西比州兰金县兰金压缩机站的两台压缩机。这两台压缩机已经好几年没用了。
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.