语音晶体(PNC)表现出通常在天然材料中发现的声学特性,这导致了新的设备设计以进行声波复杂的操作。在本文中,我们报告了通过语音晶体中的线缺陷来构建微米尺度的语音波导,以实现片上紧密限制的引导,表面声波的弯曲,弯曲和分裂(锯)。PNC由定期镍支柱的平方晶格制成。它表现出一个完整的带隙,该带隙禁止在PNC内部锯的传播,但允许线缺陷内的传播。通过基于电镀的微生物制作过程,在128°Y型niobate底物上实现了波导。PNC晶格常数,支柱直径和支柱高度分别为10 𝜇𝑚,7.5 𝜇𝑚和3.2 𝜇𝑚。互插的换能器是单层整合在同一底物上的,用于195 MHz左右的SAW激发。通过使用扫描光学杂作干涉仪测量平面外表面位移场,可以通过测量平面外表面位移场来实验观察到语音波导中表面波的引导,弯曲和分裂。高频紧密限制的语音波 - 证明了精确的局部操作锯的可行性,这对于新兴的边境应用(例如基于声子的量子信息处理)至关重要。
令人信服的Majorana零模式(MZM)的签名是基于拓扑超导性(TSC)实现易耐断层量子计算的必要要求。除了改进制造技术外,探索化学计量的TSC平台是抑制MZMS特征的琐碎内置模式影响的另一种途径。化学计量过渡金属二核苷(TMD)是有希望的,但是诱导磁性涡流范围内的磁性涡流范围受到MZMS的限制,受到小垂直上的临界临界率限制。在这里,我们提出,嵌入TMD的chalcogen空位(CVS)的线缺陷是用于实现稳定MZM的化学计量计量的TSC候选物,而无需在平面内磁场范围内范围内TSSS。对1H-MO X 2、1H-W X 2和1T-PT X 2(X = S,SE或TE)单层缺陷的详细分析和计算表明,通过非中性集体组对称性对奇数型旋转耦合效果,称为抗对称性旋转 - 铲耦合效果,称为奇数配对的起源。第一原理TSC相图的构建是为了促进对位于线缺陷两端的MZM的令人信服的签名的实验检测。我们的发现丰富了化学计量的TSC候选物,并将根据设备友好的TMD来促进设备制造以操纵和存储量子信息。