在将多种材料与不同的光学,电子和热机械特性相结合的最新进展中,从预成型的同一纤维中单层中,这为新一代的多层次纤维铺平了道路,并具有在光纤维长度尺度和成本上传递的独特功能和成本。迄今为止,已经使用这种策略来开发各种独特的设备,例如横向发射纤维激光器,检测到光线,热或声音在外表面上撞击其外表面的纤维以及含有结晶半导体芯的纤维。将这种纤维纳入未来的织物中,将导致具有复杂功能的纺织品。此外,多层纤维已经解决了光学纤维的传统应用中的长期问题,例如在空心核心全固定纤维中的光子带隙指导,并使机械鲁棒性具有机械鲁棒性,以使软玻璃中型中红外晶体燃烧器。我们回顾了这个新生但迅速增长的领域的最新进展,并突出了预计增长的领域。此外,这项研究中出现的见解指出了绘图过程本身可以用作制造方法的新方法。在术语中,我们描述了针对化学合成的多层纤维图和制造纳米结构(例如纳米线阵列和结构化纳米颗粒)的最新努力。
可以直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲成形)以满足特定应用需求,因此负载可以是真空电子二极管、z 型线阵列、气体喷射、衬套、等熵压缩负载 (ICE)(用于研究非常高磁场下的材料行为)或聚变能 (IFE) 目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所 (HCEI) 设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计为在真空或磁绝缘传输线 (MITL) 电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体中的油。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件和专门设计的
光学集体汤姆逊散射用于诊断伦敦帝国理工学院 Magpie 脉冲功率发生器的磁化高能密度物理实验。该系统使用来自 Nd:YAG 激光的 2 次谐波的放大脉冲(3 J、8 ns、532 nm)来探测各种高温等离子体物体;密度在 10 17 -10 19 cm -3 范围内,温度在 10 eV 到几 keV 之间。散射光从等离子体内 100 µ m 级体积中收集,然后成像到光纤阵列上。多个收集系统从不同方向观察这些体积,同时使用不同的散射 K 矢量(和不同的相关 α 参数,通常在 0.5 – 3 范围内)进行探测,从而可以独立测量大量等离子体流的不同速度分量。光纤阵列与带有门控 ICCD 的成像光谱仪耦合。该光谱仪配置为观察集体汤姆逊散射光谱的离子声波 (IAW)。用理论谱密度函数 S ( K , ω ) 拟合光谱可测量局部等离子体的温度和速度。拟合受到激光干涉仪对电子密度的独立测量以及不同散射矢量的相应光谱的限制。这种 TS 诊断已成功应用于广泛的实验,揭示了磁化冲击、旋转等离子体射流和内爆线阵列内的温度和流速转变,以及提供磁重联电流片内漂移速度的直接测量。I. 简介
摘要:本文探讨了发光硅纳米线 (NW) 在商业生物传感纳米器件这一日益发展的领域中的应用前景,用于选择性识别蛋白质和病原体基因组。我们通过薄膜金属辅助化学蚀刻法制备了室温下发射波长为 700 nm 的量子限制分形硅纳米线阵列,产量高,成本低。光的多次散射和弱局域化产生的迷人光学特性促进了硅纳米线作为高灵敏度和选择性光学生物传感平台的使用。在这项研究中,无标记硅纳米线光学传感器经过表面改性,可通过抗原-基因相互作用选择性检测 C 反应蛋白。在这种情况下,我们报告的最低检测限 (LOD) 为 1.6 fM,提高了在唾液或血清分析中检测不同动态范围的灵活性。通过改变纳米线表面的功能化程度,使其适应特定抗原,纳米线生物传感器的发光猝灭可用于测量乙肝病毒病原体基因组,无需 PCR 扩增,在真实样本或血液基质中的 LOD 约为 20 份。令人鼓舞的结果表明,纳米线光学生物传感器可以以前所未有的灵敏度(LOD 2 × 10 5 sEV/mL)检测和分离标记有 CD81 蛋白的细胞外囊泡 (EV),因此即使在少量囊胚腔液中也可以测量它们。
她曾发表过 450 多次通讯、120 次受邀在会议上发表通讯,并发表了 60 多次受邀通讯,其中包括 6 次全体会议报告。(2006-2009)基于多传感器阵列和选择性多孔浓缩器的化学威胁探测器项目 CBP.NR.NRSFP 982166 资助机构:北约和平科学计划开发一种化学威胁检测系统 (CTDS),该系统由一个预分离器和一组预浓缩器传感器组成,针对空气中的有毒气体检测进行了优化,干扰剂如化学品、商业产品和人体气味可能会影响检测性能。职位:北约国家主任(2007 年 3 月 1 日 -2010 年 3 月 30 日)用于多功能化学传感器的纳米线阵列 NanoSci-ERA 第 1 次跨国合作提案征集(2006 年)职位:负责科学的 UNIBS 开发一个科学和技术平台,用于生产基于相互作用的半导体纳米线阵列具有增强选择性的多功能化学传感器。将传统检测方法与由纳米线的高表面体积比提供的新型光电传感机制相结合,可获得多功能性。(2001 年 1 月 1 日 - 2003 年 12 月 31 日)欧洲项目 IST 2000 用于低功耗气体传感器便携式应用的先进气体传感技术(ADVANTAGAS)基于功函数生产可用于工业的传感器模型。制备用于传感目的的带有集成电子元件的 FET 设备。职位:负责副科学的 UNIBS。 (2010 年 9 月 1 日-2012 年 8 月 31 日) 项目“S 3:纳米 MOX 气体传感器中的表面电离和新概念,具有更高的选择性、灵敏度和稳定性,可用于检测低浓度的有毒和爆炸性物质”(NMP-2009-1.2-3;247768)。S 3 的目标是开发突破性的气体传感技术,以降低成本提供更高的灵敏度和选择性。该目标的实现方式是汇集欧盟和俄罗斯团队的优秀人才和互补技能,研究基于分子工程金属氧化物半导体纳米线 (NW) 的传感器和传感原理。角色:副协调员 (2010 年 1 月 2 日-2012 年 1 月 31 日) 金属氧化物纳米线作为高效高温热电材料 征求意见:意大利理工学院 (IIT) 项目种子年 2009 NANOTHER 目标是评估通过简单且低成本的蒸发冷凝法制备的准 1D MOX 纳米线的热电性能,并构建创新的热电模块,用于放射性同位素热电发电机和汽车工业,通过利用高温废热发电并提高空调效率来提高燃油经济性。此外,开发的模块可能对低功耗便携式电子产品产生重大影响。角色:研究员 (2010 年 5 月 5 日-2013 年 5 月 4 日) XNANO:用于开发 X 射线源的基于碳纳米管的电子发射器和准一维金属氧化物纳米结构 呼叫:MiUR e Regione Lombardia 角色:研究员 (2010 年 10 月 1 日至 2014 年 9 月 30 日) FP7-NMP-2009-LARGE-3 ORAMA:氧化物材料迈向成熟的后硅电子时代
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
