如今,生成组学数据是生物学实验室的常见活动。制备生物样本的实验方案描述得很好,大多数研究机构都有从这些样本生成组学数据的技术平台。此外,制造商不断提出技术改进,同时降低实验成本并增加单次实验获得的组学数据量。在这种情况下,生物学家面临着处理大型组学数据集(也称为“大数据”或“数据洪流”)的挑战。处理组学数据会引发通常由计算机科学家处理的问题,因此生物学家和计算机科学家之间的合作对于有效地研究整个细胞机制至关重要,正如组学数据所承诺的那样。在本章中,我们定义了组学数据,解释了它们的生成方式,最后介绍了它们在基础和医学研究中的一些应用。
引入晚期质谱技术的引入使人们可以更深入地了解复杂的生物系统。星体质谱仪代表了高通量蛋白质组学的新时代,具有提高灵敏度,速度和定量准确性。本届会议将涵盖星体仪器的能力,其对蛋白质识别和定量可能性的影响以及其在加速生物医学研究中的作用。除了技术进步,优化的实验设计和制备实践以及强大的数据分析策略外,对于在蛋白质组学研究中获得有意义的结果至关重要。会议将探讨实验计划,样本准备,数据获取,统计验证和蛋白质组学数据解释的最佳实践。会议2 |彻底改变了您的生物标志物发现 - 在规模时通过未靶向的质谱蛋白质组学揭示蛋白质组:18.02.2025,11:30 am(GMT+1)链接到会话2: https://seerbio.zoom.us.us/j/94880841661?pwd=g61dxljlvor4rh0242ffqvda4tflh.1&from = addon发言人:Maik M. Pruess博士:
本特刊第一版成功展示了许多最先进的研究成果。其中发表的稿件致力于介绍遗传学、基因组学和精准医学领域与遗传性心血管疾病(尤其是儿科患者)相关的发现和新兴概念。因此,我们很高兴宣布推出本特刊第二版,因为我们相信,在当今的精准医学时代,传播遗传学、基因组学领域的发现以及基因型-表型关联研究有助于开发真正针对患者的治疗方法。我们还相信,主动精准医学代表了预防性和预测性个性化医疗保健的未来。我们欢迎评论和原创文章,揭示有关遗传和基因组基础的信息,确定其机制和发病机制,并采用新的遗传学导向诊断和治疗遗传性心血管疾病。
本文提出了一种通过从文本科学语料库中提取相关实体并以结构化和有意义的方式组织它们来构建两个特定领域知识图的方法。该方法使用语义Web技术,涉及重复使用共享的基于RDF的标准词汇。theaiageresearchgroup 1收集了8,496Scientificarticlespublybethighthewewewnebetnexweew中与小麦的选择有关。我们使用alvisnlp [1]工作流程来识别指定的实体(NE)以及小麦品种和表型之间的关系。总共有88,880个提及4,318个不同命名的实体已被识别为frompubMedAbstractsantles。同样,收集的ThediaDeresearchGroup 217,058Sci-InfificarticlespublyBetebethextewnekewnevewnemtheybetebetikeentbewnextectikeentebetike from thearoryzabasedatabase [2],该[2]在手术中检查了与水稻基因组学相关的PubMed条目。我们使用hunflair ner tagger [3]在标题和文章摘要中提取NES。总共确定了351,003个提及63,591个不同的NE。双皮属性介于thatrefertogenes,遗传标记,特征,表型,分类群和品种实体中提到的标题和摘要出版物中提到的实体。在可能的情况下,这些NE与现有语义资源相关。小麦表型和特质提及与小麦特质本体论3(WTO)中的类别有关,分类单元与NCBI 4分类学类别有关。inderfaphsthecorepartofthedatamodelisbasadeonthew3cwebannotationology(OA),已与不同的词汇相辅相成,描述了Yacoubi等人中描述的文档。[4]。施工管道涉及两个主要步骤。首先,我们使用SPARQL微服务[5]来查询PubMed的Web API,并将文章的元数据(包括标题和摘要)转换为RDF 5。其次,使用Alvisnlp [1]和Hunflair [3]来提取和链接
热蛋白质组分析 (TPP) 和高通量蛋白质组整体溶解度变化 (PISA) 检测等高通量技术的进步彻底改变了我们对药物-蛋白质相互作用的理解。尽管有这些创新,但缺乏用于对稳定性和溶解度变化数据进行交叉研究分析的综合平台,这是一个重大瓶颈。为了解决这一差距,我们推出了 DORSSAA(基于稳定性/溶解度变化检测的药物-靶标相互作用组学资源),这是一个交互式且可扩展的基于网络的平台,用于系统分析和可视化蛋白质组稳定性和溶解度变化检测数据集。目前,DORSSAA 拥有 480,456 条记录,涵盖 37 种细胞系和生物体、39 种化合物和 40,004 个潜在蛋白质靶标。通过其用户友好的界面,该资源支持比较药物-蛋白质相互作用分析并促进可操作治疗靶标的发现。我们利用白血病细胞系联合治疗中 DHFR-甲氨蝶呤相互作用和药物-靶标相互作用的两个案例研究,证明了 DORSSAA 在跨实验条件识别蛋白质-药物相互作用方面的实用性。该资源使研究人员能够加速药物发现并增强我们对蛋白质行为的理解。
热蛋白质组分析 (TPP) 和蛋白质组整体溶解度变化 (PISA) 等高通量技术的进步彻底改变了我们对药物-蛋白质相互作用的理解。尽管有这些创新,但缺乏用于对稳定性和溶解度变化数据进行交叉研究分析的综合平台,这是一个重大瓶颈。为了解决这一差距,我们推出了 DORSSAA(基于稳定性/溶解度变化分析的药物靶标相互作用组学资源),这是一个基于网络的交互式平台,用于系统分析和可视化蛋白质组稳定性和溶解度变化分析数据集。DORSSAA 拥有 480,456 条记录,涵盖 37 种细胞系和生物体、39 种化合物和 40,004 个潜在蛋白质靶标。通过其用户友好的界面,该资源支持比较药物-蛋白质相互作用分析并促进可操作治疗靶标的发现。我们通过白血病细胞系联合治疗中 DHFR-甲氨蝶呤相互作用和药物-靶标相互作用的两个案例研究,证明了 DORSSAA 在跨实验条件识别蛋白质-药物相互作用方面的实用性。该资源使研究人员能够加速药物发现并增强我们对蛋白质行为的理解。
摘要:微生物生态学是理解微生物在各种环境和健康相关过程中的组成,多样性和功能的关键领域。通过独立的方法发现候选门辐射(CPR)已引入了一种新的微生物划分,其特征在于以共生/寄生的生活方式,小细胞大小和小基因组为特征。尽管知之甚少,但CPR近年来由于它们在各种环境和临床样本中的广泛发现而引起了显着关注。与其他微生物相比,已经发现这些微生物表现出高度的遗传多样性。几项研究揭示了它们在全球生物地球化学周期中的潜在重要性及其对各种人类活动的影响。在这篇评论中,我们提供了CPR发现的系统概述。然后,我们专注于描述CPR的基因组特征如何帮助它们与不同生态壁ches中其他微生物进行互动并适应其他微生物。未来的工作应集中于发现CPR的代谢能力,并在可能的情况下隔离它们以更好地了解这些微生物。
1 捷克共和国查理大学理学院寄生虫学系 BIOCEV、Vestec、2 西布列塔尼大学、CNRS、海洋生态系统与生态联合研究中心 BEEP、IUEM、法国普卢扎讷、3 德国马尔堡马克斯普朗克陆地微生物研究所昆虫肠道微生物学和共生研究小组、4 波兰华沙大学生物学院进化生物学研究所、生物和化学研究中心、5 加拿大埃德蒙顿阿尔伯塔大学医学系传染病科、6 瑞士洛桑联邦理工学院生命科学学院;瑞士洛桑生物信息学研究所,7 生态学、系统学和进化部,巴黎萨克雷大学,法国奥赛国家科学研究院,8 捷克科学院生物中心寄生虫学研究所,捷克 Česke´ Bud ě jovice,9 俄斯特拉发大学理学院,生物学和生态学系,捷克共和国
表型组学,即高维生物体表型分析,是一种量化复杂发育对高温反应的解决方案。'能量代理性状'(EPT)通过视频像素值波动来测量表型,即不同时间频率下的能量值谱。尽管它们已被证明可有效测量复杂且动态发育生物的生物学特性,但它们在评估不同物种的环境敏感性方面的效用尚未得到检验。利用 EPT,我们评估了三种淡水蜗牛胚胎的相对热敏感性,这三种蜗牛的发育事件时间存在显著差异。在 20°C 和 25°C 的两个温度下,每小时对 Lymnaea stagnalis、Radix balthica 和 Physella acuta 的胚胎进行视频拍摄,记录它们的胚胎发育过程。视频用于计算它们胚胎发育期间以及发育过程中各个生理窗口内的 EPT。发育过程中能量光谱的变化表明,不同物种之间的热敏感性存在明显差异,表明 R. balthica 胚胎的胚胎生理和行为总体敏感性相对较高,发育窗口特异性热响应反映了可观察生理的个体发育差异,以及温度引起的生理事件时间变化。EPT 可以比较高维光谱表型,为持续评估发育个体的敏感性提供了独特的能力。这种综合性和可扩展的表型分析是更好地了解不同物种早期生命阶段敏感性的先决条件。
抽象简介:再生肌发生在成熟的肌纤维中起着至关重要的作用,可抵消神经肌肉疾病引起的肌肉损伤或功能障碍。专门的肌源性干细胞的激活(称为卫星细胞)本质上与增殖和分化有关,然后是肌细胞融合和多核肌纤维的形成。涵盖的区域:本报告概述了卫星细胞在神经肌肉系统中的作用以及蛋白质组学分析对生物标志物发现的潜在影响,以及鉴定新的治疗靶标在肌肉疾病中的影响。本文回顾了单细胞蛋白质组学对卫星细胞,成肌细胞和心肌细胞进行系统分析的方式,可以帮助更好地理解肌纤维再生过程。专家意见:为了更好地理解神经肌肉疾病中的卫星细胞功能障碍,基于质谱的蛋白质组学是一种出色的大规模分析工具,用于对病理生理过程进行系统分析。可以通过机械/酶促解离方案通常执行优化的肌肉衍生细胞的隔离,然后在专用的流式细胞仪中进行荧光激活的细胞分类。使用标记的自由定量方法或使用串联质量标签的方法是研究干细胞在神经肌肉疾病中的病理生理作用的理想生物分析方法。