1 杜克大学医学院心脏病学系,美国北卡罗来纳州达勒姆 2 杜克临床研究所,美国北卡罗来纳州达勒姆 3 杜克大学医学院杜克分子生理学研究所,美国北卡罗来纳州达勒姆 4 杜克大学医学院内分泌、代谢和营养学系,美国北卡罗来纳州达勒姆 5 邓迪大学人口健康与基因组学系,英国苏格兰邓迪 6 北卡罗来纳大学医学院内分泌学系,美国北卡罗来纳州教堂山 7 奥地利格拉茨医科大学内分泌和糖尿病学系 8 英国格拉斯哥大学心血管和医学科学研究所 9 英国牛津大学拉德克利夫医学系糖尿病试验组
在西方社会,心肌梗死、中风和外周动脉疾病等心血管疾病是导致死亡的主要原因。这些心血管疾病的根本原因是动脉粥样硬化。动脉粥样硬化病变的早期阶段通常出现在生命的前十年,不会引起临床问题。更晚期但稳定的病变可能导致心绞痛等临床表现。当稳定病变变得不稳定并破裂时,就会出现最严重的危及生命的并发症。病变成分暴露于血液会导致血栓形成,从而完全阻塞血流。冠状动脉闭塞可能导致心肌梗死,脑动脉闭塞可能导致中风。稳定斑块变得不稳定并破裂的具体机制尚不清楚。然而,已知细胞外基质重塑在斑块稳定中发挥作用,并受到多种蛋白酶(包括组织蛋白酶)的影响。在这篇论文中,我们发现半胱氨酸蛋白酶组织蛋白酶 K 在稳定病变和含有血栓的病变之间表达存在差异。此外,通过基因缺陷和抑制,我们研究了组织蛋白酶 K 在两种心血管疾病(动脉粥样硬化和动脉瘤形成)中的作用。此外,我们使用功能基因组学方法来识别在动脉粥样硬化斑块(去)稳定中发挥作用的新基因/肽。
关于SAGC南澳大利亚基因组学中心(SAGC)是一家多机构,国家基因组学和生物信息学设施,由南澳大利亚政府和澳大利亚Bioplatforms Australia(BPA)通过澳大利亚政府的国家政府国家合作研究基础设施基础设施策略(NCRIS)支持。SAGC已在该州巩固了基因组学和生物信息学专业知识,其中一组超过16个基因组学和生物信息学员工并排工作,以提供创新的基因组学和生物信息学解决方案,包括基因组学研究的所有领域,包括农业,医疗保健和生态学。SAGC由位于阿德莱德CBD的南澳大利亚健康与医学研究(SAHMRI)主持。其Flinders节点(节点)位于新的健康和医学研究大楼(HMRB)中,是Flinders Village Development的核心。此角色主要基于Flinders校园。自成立以来,该设施一直在为其用户提供尖端的基因组技术提供开创性。SAGC是澳大利亚唯一提供超高吞吐量MGI T7测序服务的基因组学设施。它还建立了用于空间转录组学的管道(例如stomics,Xenium,visium,cytassist),单细胞基因组学(例如10x基因组学,解析生物科学),简读测序(MGI和Illumina等平台)和长阅读测序(例如牛津纳米波尔)。SAGC也是澳大利亚的三个10X基因组参考站点之一,配备了完整的工具,可以利用其领先的技术进行空间转录组学和单细胞基因组学项目。
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 12 月 22 日发布。;https://doi.org/10.1101/2020.12.22.423985 doi:bioRxiv 预印本
儿童大部分药物为口服给药,但各年龄段儿童小肠药物代谢酶(DME)和药物转运体(DT)的蛋白质丰度信息仍不明确,这阻碍了儿童精准用药。为了探索 DME 和 DT 的年龄相关差异,收集了儿童和成人空肠和回肠手术剩余的肠组织,并通过靶向定量蛋白质组学分析了顶端钠 - 胆汁酸转运蛋白、乳腺癌耐药蛋白(BCRP)、单羧酸转运蛋白 1(MCT1)、多药耐药蛋白 1(MDR1)、多药耐药相关蛋白(MRP)2、MRP3、有机阴离子转运多肽 2B1、有机阳离子转运蛋白 1、肽转运蛋白 1(PEPT1)、CYP2C19、CYP3A4、CYP3A5、UDP 葡萄糖醛酸转移酶(UGT)1A1、UGT1A10 和 UGT2B7。分析了 58 名儿童(48 条回肠、10 条空肠,年龄范围:8 周至 17 岁)和 16 名成人(8 条回肠、8 条空肠)的样本。比较年龄组时,成人回肠中的 BCRP、MDR1、PEPT1 和 UGT1A1 丰度明显高于儿童回肠。空肠 BCRP、MRP2、UGT1A1 和 CYP3A4 丰度在
在来自ND和匹配的对照组患者的CSF的病例对照研究中,发现ND患者的CSF在CSF中显着增加了神经元损伤的关键生物标志物,包括神经丝链轻链蛋白和TAU蛋白(图6A)。重要的是,在ND患者的CSF中发现了数千种其他蛋白质(包括蛋白质成型和PTM)的其他蛋白质差异存在,揭示了潜在的新ND生物标志物或药物靶标(图6B)。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.637346 doi:Biorxiv Preprint
蓝藻是唯一已知的光合原核生物,是一种古老的生物,被认为是地球氧气大气的生产者和植物叶绿体的祖先。当代蓝藻已进化为广泛多样的生物,在大多数水生和土壤生物圈中定居,它们面临着各种环境挑战以及与其他生物的竞争或共生。蓝藻表现出广泛的形态多样性(单细胞/多细胞、圆柱形/球形),许多物种分化出专门的细胞以在恶劣条件下生长和生存。它们高效地转化捕获的太阳能,将大量二氧化碳中的碳固定为巨大的生物质,以维持大部分食物链,并且它们能够耐受气流中高浓度的二氧化碳。它们还合成大量生物活性代谢物,对人类健康和工业具有重要意义。因此,由于其简单的营养需求、代谢稳健性和可塑性以及某些模型菌株的强大基因,它们被视为有前途的“低成本”细胞工厂,可用于碳中性化学品的生产。
6基因工程的国家主要实验室,人类现象研究所,Zhangjiang Fudan International Innovation Center和National临床老化与医学研究中心,华山医院,Fudan University,上海200433,中国
在几种物种中,抗性和易感个体之间的表型差异与基因表达的组成型变化有关。例如,在对神经毒性杀虫剂有抵抗力的个体中观察到了排毒基因家族的构型过表达。这表明了代谢解毒在抗性中的作用,在某些情况下,允许允许使用哪些基因参与耐药的遗传方法。细胞色素P450单糖酶和三磷酸腺苷(ATP)结合盒(ABC)转运蛋白的情况就是这种情况。5,24 - 29除解毒基因之外,已经记录了编码角质层合成基因的过表达,并导致耐药性和易感性的独立物(即穿透性抗性)之间的表皮变化。30该证据突出了通常基于抗性表型的复杂性,并表明需要研究基因表达以充分理解昆虫抗性。与其他杀虫剂相反,抗药性个体中的表达情况已被广泛阐明,蚊子对CSIS的抗性表型的整个基因表达模式仍然被忽略了。在这里,我们的目标是通过分析蚊子CX的易感和耐DFB个体的构成基因表达来弥补这一差距。pipiens。