注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。
● 削弱制衡:通过清洗公务员、开除独立机构领导人、摧毁整个机构、以政治忠诚为条件提供联邦资金,巩固不受制约的总统权力。2025 项目削弱了每一位公务员维护法律的能力,迫使他们以牺牲公众利益为代价为总统服务。● 对公务员的政治清洗:对数千名独立公务员进行忠诚度测试和清洗,以便总统可以将控制权交给数千名政治人员,这些政治人员都是总统精心挑选出来的,他们对总统的忠诚不容置疑,无论资历、专业知识或对宪法义务的承诺如何。● 夺取对独立机构的控制权:开除独立机构领导人,迫使从美联储到 FDA、FCC 到 CIA 等独立机构将总统的狭隘利益置于专业知识、专业判断和宪法义务之上。
解释摄像机数据是自主行动系统(例如自动驾驶汽车)的关键。在现实世界环境中运行的视觉系统必须能够解释其周围环境,并需要能够处理新型情况。本文解决了开放世界的分段,即解释训练过程中未见对象的图像数据的变体。我们提出了一种新的方法,该方法可以执行确定性封闭世界的语义分割,同时可以识别新类别,而无需任何适当的培训数据。我们的方法1另外,为图像中的每个新发现的类与已知类别提供了相似性度量,这在下游任务(例如计划或映射)中可能是有用的信息。通过广泛的实验,我们表明我们的模型在已知的训练数据以及异常分割的类别上实现了最新的结果,并且可以区分不同的未知类别。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
在生病的过程中,她经常患有阻塞性肺炎(请参阅2025年1月23日CXR图6),并接受了抗菌/抗真菌药物治疗,发烧,麻烦的止血性。她的WBC有时还需要较低,需要filgrastim,低血红蛋白需要促红细胞生成素,有时需要输血,以及与劳拉替尼相关的牛皮癣 - 形成皮疹2级(症状;在lorllatinib恢复时延迟并重新恢复该药物时,可以进行症状治疗;在lorllatinib时进行了解决)。
摘要 - 在自动移动和机器人系统的感知框架内,对Lidars通常生成的3D点云的语义分析是许多应用程序的关键,例如对象检测和识别以及场景重建。场景语义分割可以通过将3D空间数据与专门的深神经网络直接整合在一起来实现。尽管这种类型的数据提供了有关周围环境的丰富几何信息,但它也提出了许多挑战:其非结构化和稀疏性质,不可预测的规模以及苛刻的计算要求。这些特征阻碍了实时半分析,尤其是在资源受限的硬件 - 构造方面,构成了许多机器人应用的主要计算组件。因此,在本文中,我们研究了各种3D语义分割方法,并分析了其对嵌入式NVIDIA JETSON平台的资源约束推断的性能和能力。我们通过标准化的培训方案和数据增强进行了公平的比较,为两个大型室外数据集提供了基准的结果:Semantickitti和Nuscenes。
提取和分析详细的视觉信息。传统的人工神经网络(ANN)在这一领域取得了长足的进步,但是尖峰神经网络(SNN)的能源效率和以生物为基础的基于时间的处理而引起了人们的关注。然而,由于限制,诸如量化误差和次优膜电位分布之类的局限性,现有的基于SNN的语义分割方法面临着高精度的挑战。这项研究介绍了一种基于尖峰 - 深板的新型尖峰方法,并结合了正则膜电位损失(RMP-loss)来应对这些挑战。建立在DeepLabv3体系结构的基础上,提出的模型通过优化SNN中的膜电位分布来利用RMP-loss来提高分割精度。通过优化膜电位的存储,其中仅在最后一个时间步骤存储值,该模型可显着减少内存使用和处理时间。这种增强不仅提高了计算效率,而且还提高了语义分割的准确性,从而可以对网络行为进行更准确的时间分析。提出的模型还显示出更好的稳健性,以防止噪声,在不同级别的高斯噪声下保持其精度,这在实际情况下很常见。所提出的方法在标准数据集上展示了竞争性能,展示了其用于节能图像处理应用的潜力
Imen Nouira、Ramzi Hammami、Alina Fernandez Arias、Natacha Gondran、Yannick Frein。橄榄油供应链设计,包括有机和传统市场细分以及消费者对本地产品的偏好。国际生产经济学杂志,2022 年,247,第 108456 页。�10.1016/j.ijpe.2022.108456�。�emse-03592598�