空间交通管理 (STM) 和空间态势感知 (SSA) 在近地区域得到了积极的研究和应用。然而,包括武装部队和商业利益在内的航天事业正在向地月区域扩张,从而产生了对地月领域 STM 和 SSA 的需求。本文展示了实现全面地月 SSA (CSSA) 的实际步骤,目的是建立对整个地月区域的监视。为此,研究了地月 2:1 共振轨道的适用性。该轨道系列允许在不到 20 圈的时间内构建覆盖整个地月区域的周期性轨道。使用地面传感器,可以对轨道进行覆盖观测。月球地面传感器带来的好处不大。不确定性传播和轨道测定表明,2:1 共振轨道非常适合这样的星座,并且比地月区域的许多其他经典轨道具有更好的轨道特性。
19 摘要(如有必要,请反向继续,并按块号标识)作者比较了 UHF 后续系统和 MILSTAR 卫星通信系统。比较使用了分析层次结构过程。尽管这两个系统的任务不同,但还是进行了成本、能力和轨道的比较。UFO 提供许多与 MILSTAR 相同的能力,但规模较小。由于 UFO 也是一种新的太空系统,因此它用于比较部署有价值的通信系统所花费的资金。对频带、损耗和问题进行了评估,以确定系统的相似性。对可用的经典轨道进行了调查,以进一步建立关系。提供成本数据以确定系统之间的主要差异。虽然 MILSTAR 确实比 UFO 拥有更多的总能力,但成本却高出 10 倍。此外,UFO 是一种将采用新技术演进的卫星,而 MILSTAR 可以立即达到全部能力。在作者看来,MILSTAR 的增量并不仅仅是其增量成本。
摘要。多体系统的量子混沌已迅速发展成为一个充满活力的研究领域,涉及从统计物理学到凝聚态物理、量子信息和宇宙学等各个学科。在具有经典极限的量子系统中,先进的半经典方法提供了经典混沌动力学与量子层面上相应的普遍特征之间的关键联系。最近,处理通常的半经典极限 ℏ → 0 中的遍历波干涉的单粒子技术已经开始转变为类似半经典极限 ℏ eeff = 1 /N → 0 中的 N 粒子系统的场论领域,从而解释了真正的多体量子干涉。这种半经典多体理论为理解单粒子和多体量子混沌系统的随机矩阵相关性提供了一个统一的框架。某些经典轨道和平均场模式的编织束分别控制干涉,并为普遍性的基础提供了关键。所提出的案例研究包括 Gutzwiller 谱密度迹公式和不按时间顺序的相关器的多体版本,以及关于可能取得进一步进展的简要评论。
在其成立的早期,量子力学也被称为波浪力学,量子状态被称为波形[1],这突显了材料运动的经典轨道现实的根本性,这种情况在现代量子光学上反转,在现代量子上,经典性与波动性质和非类粒子相关(量子性7 pontic)是与2相关的pontos iS pontos is classication s的相关性。对非经典性的追求导致量子光学的出现,许多理论上鉴定了光的非经典特性(玻璃体场),例如挤压,反式堆积,副统计统计数据,SchrödingerCat States等,这些量子已经经验丰富,并且已经经验丰富,并且已经进行了数量的量化。现在已广泛认识到,波斯环境状态的非经典性是量子力学的基本组成部分,也是量子实践中的重要资源,具有广泛的应用。已做出了明显的努力来检测和量化国家的非古老性,并引入了各种措施或量化器。第一个广泛使用的数量来表征光的非经典性,似乎是曼德尔的Q参数[11],它使用光子数与泊松分布的偏差来指示非经典性。各种基于距离的