摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
摘要:马来西亚皇家空军大多数战斗机的机身结构已服役 10 至 20 年。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性成为其适航性评估的依据。使用各种无损检测方法确定飞机结构在超过 10 年的运行后的当前状况,并总结了它们的结果。此外,虽然有六个关键位置,但选择了翼根,因为它最有可能出现疲劳失效。使用模拟分析进一步分析了疲劳寿命。这有助于开发维护任务卡,并最终有助于延长战斗机的使用寿命。RMAF 使用安全寿命或损伤容限的概念作为其疲劳设计理念,采用了飞机结构完整性计划 (ASIP) 来监测其战斗机的结构完整性。在当前预算限制和结构寿命延长要求下,RMAF 已着手采用无损检测方法和工程分析。该研究成果将增强马来西亚皇家空军舰队其他飞机平台的 ASIP,以进行结构寿命评估或使用寿命延长计划。
Teresa Magoga 和 Brett A. Morris 海事部门国防科学技术组 DST-Group-TN-1826 摘要 对未安装船体监控系统 (HMS) 的澳大利亚皇家海军 (RAN) 新型舰艇的结构寿命 (LOT) 管理考虑因素、假设和选项进行了初步研究。该研究使用批判性思维或“红队”技术来确定不在 RAN 舰艇上安装 HMS 的后果,以及确定不使用 HMS 的 LOT 管理策略。主要后果是 RAN 管理 LOT 风险和船队可用性的能力将受到影响。确定了三种替代 LOT 管理策略,这会导致对 RAN 舰艇 LOT 风险管理的信心水平降低。这主要是因为需要有关船舶运营使用情况的准确数据才能高度自信地管理其 LOT 风险。这些数据与数字孪生等新兴技术相结合,为 RAN 成为“智能船东”提供了基于条件的维护和支持机会。然而,在 RAN 船上实施 HMS 将产生终身财务和人力资源成本,决策者需要权衡这些成本与 LOT 管理和其他利益。发布限制已批准公开发布。