从图5中,1365cm⁻°和1210cm⁻⁻处的强峰分别指示存在三角形的Bo₃和四面体BO₄结构单元。这些单元构成了硼酸盐玻璃网络的骨干,BO₃单元有助于非线性光学性能,并且BO₄单位增强了玻璃的热和机械稳定性。887cm⁻见的峰表示BI-O振动或B-O-B弯曲,强调了BI₂O₃作为网络修饰符的作用。此添加引入了非桥接氧原子(NBOS),该原子破坏了连续的硼酸盐网络并影响玻璃的光学和结构特性。总体而言,FTIR数据验证了将稀土氧化物和修饰符成功掺入玻璃基质中,从而突出了系统对高级光学和电子应用的适用性。
完全同态加密。加密技术是保护数据的首选方法。但传统加密算法仅仅保护传输中或静止的数据。事实上,传统加密方案的一个限制和结构特性是数据需要先解密才能处理。如前所述,这不适合机器学习应用。在传统加密方案中,隐私控制权掌握在加密数据的接收者手中。一种根本不同的方法是依靠完全同态加密 (FHE),它于 1978 年首次被提出作为一项挑战 [ 26 ],直到 2009 年才由 Gentry 取得突破性成果 [ 15 ] 得以解决。与传统加密方案相比,完全同态加密方案允许接收者直接对加密数据进行操作。
摘要将纳米材料和工业废物整合到电磁干扰(EMI)屏蔽复合材料中代表了针对现代基础设施挑战的可持续和高效解决方案的有希望的途径。本文讨论了这些材料如何改善,重点是纳米颗粒和可回收的工业废物,使它们能够改善EMI屏蔽。此外,还详细阐述了电信,防御和电子设备等EMI屏蔽复合材料的关键应用。详细解释了CE MET CYNCRETE和基于砂浆的EMI复合材料的机械和微观结构特性。本文还研究了以更大的规模和降低的成本以及未来发展的可能性生产这些材料的挑战。最终,这项工作有助于开发高性能的EMI复合材料,这些复合材料是通过将支持可持续结构的废物最小化的,使用对生态友好的材料开发的。
联系人:John Monk 南非 CSIR 航空系统能力专注于空气动力学分析、设计、开发和模拟、风洞测试、气动弹性服务、结构分析和飞机储备清关。设施包括高速、中速和低速风洞、水洞、级联测试设施、涡轮测试设施、UAS 集成实验室、模拟实验室和地面振动测试设施。典型活动包括无损检测、直升机结构和空气动力学技术、燃气涡轮发动机技术、空中武器流动和结构特性、储备运载和释放预测、计算流体动力学 (CFD)、国际地面振动测试 (GVT)、颤振分析和预测、颤振飞行测试软件和硬件系统、比实时任务模拟更快、实时飞行模拟、机械武器和储备集成以及飞机结构技术。
尽管抗病毒药物开发已经增长,并且疫苗已经可以访问,但仍需要具有成本效益且易于适用的治疗方法来打击Covid-19 [13]。可以口服或通过吸入来施用广谱冠状病毒抑制剂,可能在处理新兴的SARS-COV-2变体方面起着至关重要的作用[13]。这种疗法将对未来的致病性冠状病毒的爆发的准备将是极大的[13]。响应于199的大流行,已经对SARS – COV-2蛋白质和病毒细胞蛋白复合物的结构特性进行了许多研究,以找到治疗性干预措施的潜在靶标[14]。尖峰蛋白,主蛋白酶(MPRO),木瓜样蛋白酶(PLPRO)和RNA-脱纤维RNA聚合酶(RDRP)是最深入研究的药理靶标[14]。通常,针对
摘要:近年来,石墨烯和氧化石墨烯的研究日益增多,因为它们的特性为药物输送系统带来了优势。它们具有六边形和二维 2D 结构,厚度只有一个原子。包含这些分子的药物输送系统能够进入细胞并到达组织和器官。此外,由于它们的表面积较大,因此可以负载大量药物。氧化石墨烯具有比石墨烯更具吸附能力的功能团。它们都用于治疗和诊断目的,包括医学成像。它们都具有抗菌活性,并且氧化石墨烯的活性比石墨烯更强。由于其结构特性,氧化石墨烯在药物输送研究中更受青睐。本综述概述了含石墨烯和氧化石墨烯的药物输送系统的研究。
摘要:钙钛矿太阳能电池 (PSC) 引起了越来越多的研究兴趣,但其性能取决于材料的选择和所用的工艺。这些材料通常可以在溶液中处理,这使得它们非常适合卷对卷加工方法,但它们在环境条件下的沉积需要克服一些挑战以提高稳定性和效率。在这篇评论中,我们重点介绍了钙钛矿材料以及空穴传输层 (HTL) 和电子传输层 (ETL) 材料的光子固化 (PC) 的最新进展。我们介绍了如何使用 PC 参数来控制钙钛矿 HTL 和 ETL 层的光学、电学、形态和结构特性。强调这些进步对钙钛矿太阳能电池的重要性可以进一步凸显这项研究的重要性,并强调其在创造更高效和可持续的太阳能技术方面的重要作用。
框架,框架稳定性的分类和t c的估计。在步骤1中,我们从沸石数据库中收集了所有框架,并通过我们的杂质筛选程序确定了合适的围墙框架。然后通过笼子中的金属元素插入剩余的杂质框架,然后在300 GPA处进行高通量计算。在步骤2中,通过动力学稳定性对优化的结构进行了分类,并用于训练分类模型。在步骤3中,我们将动态稳定结构的T C值计算为模型目标,并将其电子和结构特性作为T C预测模型的输入特征。工作流程完成后,我们使用生成的数据和以前的研究中使用结构来测试我们的策略。可以将工作流程的结果添加到训练集中,以进一步完善分类和估计模型。
2-1:常规实验的测试目标和结构模型 .............................................................................. 13 2-2:RTHS 测试活动目标和结构模型摘要 .............................................................................. 15 2-3:FWT 常规实验的比例因子 ............................................................................................ 17 2-4:常规和 RTHS 实验的测试设置 ...................................................................................... 21 2-5:常规和 RTHS 实验中的仪器 ............................................................................................. 27 2-6:FWT 的常规和 RTHS 实验室实验摘要 ...................................................................... 31 2-7:选定的海上实验摘要 ............................................................................................................. 32 3-1:vRTHS 和数值建模测试或模拟的文献综述。 .................. 39 3-2: FWT 的 RTHS 实验总结 .............................................................................. 40 3-3: MIT/TLP 平台和 5 MW NREL 风力涡轮机结构特性 (Matha, D., 2010) 47 3-4: TLP MIT/NREL FWT 的固有频率验证(参考) ............................................................. 51 3-5: 子结构方法......................................................................................................................... 54 3-6: 气动和流体动力学载荷工况 ............................................................................................. 60 3-7: 评估标准 res
[1] S. Murali、LYW Evone、LMWa、BA Danila、LC Keong、LY Ting、BS Kumar、K、Sungsig,“Sn57Bi1Ag 焊料合金接头的微观结构特性”,IMAPS – 第 55 届国际微电子研讨会,波士顿,2022 年 10 月 5 日。[2] Q. Liu、Y. Shu、L Ma、F. Guo,“高电流密度下共晶 SnBi 焊点的微观结构演变和温度分布研究”,2014 年第 15 届国际电子封装技术会议。[3] P.Singh、L. Palmer、RF Aspandiar,“一种研究电迁移的新装置”,SMTA 泛太平洋微电子研讨会,2022 年 2 月 1 日,夏威夷瓦胡岛。 [4] IA Blech,“氮化钛上薄铝膜的电迁移”,J. of Appl. Physics,第 47 卷,第 4 期,1976 年 4 月。