8:40-9:00 社交网络 9:00-9:10a 欢迎,Jason Averill,EL 材料与结构系统部部门主管 9:10-9:40a 3D 打印的聚合物物理学 Kalman Migler 博士,MML 材料科学与工程部 9:40 – 10:10a 胶凝材料的增材制造 Scott Jones 博士,EL 材料与结构系统部 10:10 – 10:30a 休息 10:30 – 11:00a MGI 和 AI James Warren 博士,MML 材料基因组计划主任 11:00–11:30a 聚合物信息学数据库 Debra J. Audus 博士,MML 材料科学工程部 11:30a–12:00p 使用飞行时间二次离子质谱法进行表面和痕量化学分析Shin Muramoto 博士,材料测量科学部,MML 12:10-1:10p 在 NIST 自助餐厅享用午餐 1:20 – 2:20p 参观:304/124 的 EL AM 研究中心 (AMRC) Thien Phan 博士,智能系统部,EL 2:30-3:00p 演示:数据增强 360 度视频 Matthew Hoehler 博士,消防科学部,EL 3:00 – 3:20p 休息
扉页 磁控表面粗糙度与弹性模量对磁流变弹性体—铜副滑动摩擦特性影响研究 李睿,1975年生,重庆大学博士研究生,现任重庆邮电大学教授,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 电话:+86-135-94078659;邮箱:lirui_cqu@163.com 王迪,1996年生,重庆邮电大学自动化学院硕士研究生,邮箱:812996901@qq.com 李欣燕,1995年生,重庆邮电大学自动化学院硕士研究生。 E-mail:459148593@qq.com 杨平安,1989年生,重庆大学博士研究生,现职为重庆邮电大学讲师,主要研究方向为智能仿生复合材料、柔性传感器、电磁屏蔽材料与结构设计。 电话:+86-151-23254645;E-mail:yangpa@cqupt.edu.cn 阮海波,1984年生,重庆大学博士研究生,主要研究方向为柔性纳米线复合透明电极的构建及其性能提升。 电话:+86-136-47619849;E-mail:rhbcqu@aliyun.com 寿梦杰,1993年生,重庆大学博士研究生,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 E-mail: shoumj@cqupt.edu.cn 通讯作者 : 杨平安 E-mail : yangpa@cqupt.edu.cn
提出了减弱的可能性。因此,在云本地环境中,加密敏捷性的重要性可以在云本机环境中迅速变化,并且已经强调并开始。在这项研究中,我们将分析当前服务网格解决方案在实现服务消息环境中的加密敏捷性方面面临的结构系统并建议解决方案。特别是,我想提出一个改进方向,以通过专注于代表性服务网格解决方案ISTIO来提高加密敏捷性。
1 比利希姆创新中心,METU Technopolis,安卡拉 06510,土耳其 2 恰卡亚大学,建筑学院,建筑系,安卡拉 06530,土耳其 3 阿克德尼兹大学,建筑学院,建筑系,安塔利亚 07070,土耳其 4 阿克德尼兹大学,技术职业高中,安塔利亚 07070,土耳其 重点:图形/表格摘要 人工神经网络和深度学习方法 估计结构不规则性的新方法 深度学习和图像处理方法在抗震建筑设计中的应用 图 A. 图形摘要目的:本研究的目的是通过使用深度学习和图像处理方法,创建一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关结构系统决策是否符合抗震规定的一般信息,这些信息可在设计过程的早期阶段通过深度学习和图像处理方法进行。这样,在设计的早期阶段就能做出正确的决策,并防止在实施项目阶段可能发生的意外修改。理论与方法:在本研究中,我们提出了一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关土耳其地震规范中定义的结构系统不规则性的一般信息,它是使用深度学习和图像处理方法开发的。PYTHON 是学术领域最常用的编程语言之一,PYTHON IDLE(集成开发和学习环境)用于创建应用程序。Image AI 工作库用于制作此软件产品。结果:向 IC 助手展示了以前没有给过机器的新计划,并询问这些计划中的结构系统是否按照地震法规的定义是规则的还是不规则的。结果表明,DK 助手可以成功地提供有关任何结构系统的规则性百分比的信息。结论:研究表明,深度学习和图像处理方法可用于在建筑设计过程的早期阶段发现结构不规则性。
图 2. 基于纳米材料的人工突触概述及其在神经形态计算中的应用 [19,48,80–82]。材料和结构系统奠定了基础并勾勒出蓝图;神经形态应用是设计与现实之间的纽带。经许可转载 [19]。版权所有 2018,Wiley-VCH。经许可转载(CC BY-NC 4.0)[80]。版权所有 2021,Yu 等人,美国科学促进会。经许可转载 [48,81]。版权所有 2018,2021,美国化学学会。经许可转载(CC BY)[82]。版权所有 2020,Kim 等人,Frontiers。
1 - 行李处理系统 2 - 通信和 IT 3 - 电气 4 - 防火和探测 5 - 管道 6 - 供暖、通风和空调 7 - 建筑 8 - 饮用水 9 - 喷气燃料 10 - 结构系统 11 - 机场设计 12 - 飞机饮用水柜 13 - 400 赫兹固态变频器 14 - 旅客登机桥 15 - 灌溉和景观 16 - 预处理空气装置和配件 17 - 卫生下水道 18 - 陆侧土木设计 19 - 建筑围护结构 20 - 外部改进 21 - 排水 22 - 建筑门和硬件 23 - 阴极保护 24 - 运营准备和机场转运 25 - 环境
摘要:专门为增材制造而配制的材料创新备受关注,可以为设计下一代设备和工程应用的经济高效的智能材料创造新的机会。然而,先进的分子和纳米结构系统通常无法集成到 3D 可打印材料中,从而限制了它们的技术可转移性。在某些情况下,可以使用离子性质的聚合物大分子(例如聚合物离子液体 (PIL))来克服这一挑战。由于它们的可调性、分子组成多样性和大分子结构,它们表现出稳定分子和纳米结构材料的卓越能力。基于 3D 可打印 PIL 的配方所产生的技术代表了一系列尚未开发的潜在应用,包括光电、抗菌、催化、光活性、导电和氧化还原应用。
本研究探讨了大学生书面交流的优势和局限性。实施了一项发展书面交流的策略,并通过实验验证了结果。本研究旨在评估改善基础教育专业学生书面交流的策略所取得的成果。上述策略的有效性得到了证实,因为学生在学习和智力发展方面取得了更高的学术成绩。采用了科学实验、科学测量、文件和内容分析方法。通过应用描述性和推理性统计方法分析数据,以证明允许验证所应用教学策略的假设。使用的理论方法是:比较法、假设演绎法、科学建模和功能结构系统。其中最显著的结果是加强了书面交流学习,提高了教学成果、动机水平和学习兴趣。
摘要:多糖材料和生物材料因其在化学结构和修饰的可能性中的多功能性及其生物相容性,可降解性和可持续性特征而获得了激烈研究的重点。本综述着重于SAN在多糖系统上应用的最新进展,这些系统涵盖了纳米构成组件,水凝胶,纳米复合材料以及植物启发纳米结构系统等广泛材料。它通过证明对比度变化和对比匹配方法的特征,并报告数据分析和解释的方法,从而激发了SAN的全部潜力使用。由于这些软物质系统可以根据其组件之间的相互作用和化学键进行多个长度尺度组织,因此SANS为高级表征和优化了新的纳米结构多糖材料提供了出色和独特的机会。
通过遵循近年来在国际上牢固确立的趋势,SPIN 原有的超导和高温超导氧化物专业知识已逐渐发展,重点转向新型先进材料。在过去十年中,多功能氧化物、有机和混合材料以及纳米结构系统等领域的研究得到了大力推动。在欧洲、美国和日本的重要实验室(伊利诺伊州阿贡国家实验室、佛罗里达州塔拉哈西应用超导中心、宾夕法尼亚州立大学、大阪 ISIR、筑波大学等)确实可以观察到类似的趋势。该研究所的一个相关特点是广泛使用线性、非线性和超快激光技术进行材料合成和表征。这种非常成功的方法为 SPIN 研究领域的研究提供了附加价值。