产品编号:M1008 产品名称:Pre SafeStained 1Kb DNA Ladder 内容:描述:Pre-SafeStained 1Kb DNA Ladder 含有 13 个 DNA 片段,范围从 100bp 到 10Kb。它已预染色,因此可以在凝胶运行后直接进行可视化,无需进一步的 DNA 染色步骤。SafeStain 6X DNA Loading Dye 含有两种示踪染料以及与 DNA ladder 中相同的安全绿色荧光染料。两种示踪染料用于监测琼脂糖凝胶的运行,绿色荧光染料用于染色 DNA 样本。通过使用这种特殊的 DNA 上样染料,您的琼脂糖凝胶在运行时将显示两种不同的颜色,蓝色和黄色,在 LED 或紫外线下将显示绿色荧光 DNA 带,无需额外的染色步骤。DNA ladder 和您的样本将发出绿光(530nm)。贮存:长期贮存于 4 o C 或 -20 o C ;避免光照。 DNA SafeStain 上样染料的组成:Tris-HCl 10mM EDTA 1mM 甘油 5% 二甲苯蓝 0.06% 黄色染料 0.6% 绿色荧光染料最佳 pH 值为 7.5 @ 25°C
答:激光荧光投影仪通常简称为“激光投影仪”,但激光投影仪还有另一种平台,通常称为 RGB 激光,其处理光线的方式截然不同,但都为最终用户提供了多种好处。激光荧光是一种固态无灯投影照明平台,与基于灯的投影技术相比,其使用寿命更长。1DLP® 技术 1DLP® 投影仪使用蓝色激光二极管作为主要光源,以产生三原色 - 红、蓝、绿 - 激光二极管发出的蓝光照射到涂有荧光化合物的旋转轮上,发出黄光。使用二向色滤光片分离黄光以产生红光和绿光,而蓝光成分则直接穿过荧光轮的透明扩散段。红、绿、蓝三色传递到 DLP® 芯片的成像表面,然后 DLP® 芯片将光线通过镜头发送到投影屏幕上。 3LCD 技术 3LCD 投影仪使用白色激光二极管作为主要光源,使用二向色滤光片分离每种颜色来产生三原色,然后使单独的红、绿和蓝光穿过三个透射式 LCD 成像面板,之后光重新组合以通过镜头在投影表面上创建图像。
2020年被恶劣信仰的共同流行病造成了伤害,该流血席卷了数百万人的生命,通过社会疏远而造成了激进的社会变化,并破坏了经济超级能力的实力,这些力量已经看到了工作的衰落,爆炸,一种失业人数的爆炸,几个企业的死亡,几个企业的死亡,又创造了一个珍惜珍惜的责任。尽管有几种疫苗的绿光,从而实现了旨在建立牛群免疫力的全球医学攻势,并带回了整个社会的正常性,但生活和生计已经被破坏,社会和心理健康问题已经失控了,重点是重塑和重塑新规范。许多人同意,从经济角度来看,旅游业一直是这场战争的最大伤害,因为旅行实际上已经停滞不前。,即使欧洲在建立申根地区的几十年中的努力实际上已经在几个月内通过引入锁定,边境管制,强制性的隔离期间在其他几项预防措施中进行了瓦解,许多预防措施正在谈论引入某种形式的文档证据,显示了未来可预见的未来疫苗接种的证据。联合国世界贸易组织(UNWTO)预测,2020年旅游业的出口收入下跌了约9100亿美元,至1.2万亿美元,对该地区的GDP产生了影响1.5%至2.8%。
关键词:雷达 海岸 光学接收系统 双频 三通道 摘要:海岸带多潮间带、岛礁,传统的船载声学测量方法效率极其低下,因此海岸带三维综合测量一直是遥感领域的一个难点。由于海水蓝绿光窗透明度好,激光点云数据能快速准确区分浅海水体地形特点。目前国际上对海岸带最有效的探测方式是机载双频激光雷达探测技术,该技术测量速率高,覆盖范围广。激光器同时输出1064nm和532nm双波长激光,1064nm激光形成海面回波,532nm激光穿透海水形成浅海和深海回波。但在海水传播过程中,随着水深的增加,光子散射数增多,会造成回波信号的衰减。因此对大动态范围内的弱光探测精度不高,一直是近岸航空测深的难点。针对这一问题,设计了分场三通道光学接收系统。ZEMAX仿真结果表明,双通道激光雷达三通道接收光学系统有效降低了光学元件与通道间的光串扰,实现了不同水深通道的能量收集。该结构对光电信号进行了动态压缩,提高了信噪比。
水下生物具有复杂的推进机制,使它们能够以特殊的灵活性来浏览流体环境。最近,实质性的效果专注于使用智能形状变化的材料将这些运动集成到软机器人中,尤其是通过使用光进行推进和控制。尽管如此,挑战仍然存在,包括缓慢的响应时间和强大的光束启动机器人的需求。这最后可能导致意外的样品加热,并可能需要在游泳者身上进行特定的驱动点。为了应对这些挑战,引入了新的含偶氮苯的光聚合油墨,可以通过挤出打印到精确形状和形态的液晶晶体弹性体(LCE)元素中来处理。这些LCE表现出由中强度的紫外线(UV)和绿光驱动的快速而显着的光机械水下反应,这是致动机制,主要是光化学。受自然的启发,印刷了一种仿生的四叶埃菲拉(Ephyra)样游泳者。具有中等强度紫外线和绿灯的整个游泳器的定期照明,可引起同步的lappet弯曲光源,游泳者的推进器远离光线。该平台消除了对局部激光束和跟踪系统的需求,以通过流体监视游泳者的运动,从而使其成为创建轻型机器人LCE的多功能工具。
鉴于这些挑战,量子点彩色滤光片 (QDCF) 已被提出作为实现全彩微型 LED 显示器的替代方法 [2, 13, 17]。在该技术中,含量子点 (QD) 的材料(例如量子点光刻胶 (QDPR) 或量子点墨水)通过光刻或喷墨打印图案化为像素化阵列。然后,将该 QDCF 顶部玻璃以像素到像素的精度安装在全蓝色微型 LED 背板上。红色和绿色子像素中的红色 QD (R-QD) 和绿色 QD (G-QD) 会分别将蓝色微型 LED 发出的蓝光转换为红光和绿光,实现全彩显示。这样,只需要单色蓝色微型 LED 背板,这大大简化了传质过程,也减轻了温度引起的色移。在本文中,我们介绍了对 QDCF 微型 LED 技术的研究。我们使用光刻技术在 QDCF 顶部玻璃上图案化红色和绿色 QDPR。然后,将该顶部玻璃与蓝色微型 LED 背板精确粘合。测量所得器件的光学性能。此外,我们讨论了蓝光发射角度对 QDPR 厚度的适当选择以及优化精密粘合工艺以消除串扰的影响。结果,我们实现了具有良好显示性能的 1.11 英寸 228 ppi 全彩 QDCF 微型 LED 原型。讨论可能促进 QDCF 技术在微型 LED 显示器中的应用。
摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
摘要 — 涉及检查和着陆任务的无人机 (UAV) 多任务任务对于新手飞行员来说具有挑战性,因为与深度感知和控制界面相关的困难。我们提出了一个共享自主系统以及补充信息显示,以帮助飞行员在没有任何飞行员培训的情况下成功完成多任务任务。我们的方法包括三个模块:(1)将视觉信息编码到潜在表示上的感知模块,(2)增强飞行员动作的策略模块,以及(3)向飞行员提供额外信息的信息增强模块。在用户研究 (n = 29) 中,策略模块在模拟中使用模拟用户进行训练,并在未经修改的情况下转移到现实世界,同时还有补充信息方案,包括学习到的红/绿光反馈提示和增强现实显示。策略模块不知道飞行员的意图,只能根据飞行员的输入和无人机的状态推断。助手将着陆和检查任务的任务成功率分别从 [16.67% 和 54.29%] 提高到 [95.59% 和 96.22%]。借助助手,缺乏经验的飞行员也能取得与经验丰富的飞行员类似的表现。红/绿灯反馈提示可将检查任务所需的时间缩短 19.53%,轨迹长度缩短 17.86%,参与者将其评为他们的首选条件,因为界面直观且令人放心。这项工作表明,简单的用户模型可以在模拟中训练共享自主系统,并转移到物理任务以估计用户意图并为飞行员提供有效的帮助和信息。
摘要:为了研究靶向肿瘤光活化化疗的潜力,手性氟氨酸抗癌弹头,λ /δ-[ru(pH 2 phen)2(oh 2)2] 2+,通过直接的METARE和METAR均与METAR共轭含有RGD的AC-MRGDH-NH 2肽连接到含RGD的AC-MRGDH-NH 2肽。此设计提供了两个环状金属肽的两个非映异构体λ-[1] Cl 2和δ-[1] Cl 2。在黑暗中,唯一的螯合肽具有三重作用。首先,它防止其他生物分子与金属中心协调。第二,它的亲水性[1] Cl 2两亲性使其在培养基中自组装成纳米颗粒。第三,它通过与整联蛋白的强烈结合(K d =0.061μm)作为λ-[1] Cl 2与αIIIBβ3的结合)充当肿瘤靶向基序,从而导致受体介导的偶联物在体外的摄取。在A549,U87MG和PC-3人类癌细胞系和U87mg三维(3D)肿瘤球体的二维(2D)单层中的光毒性研究的机理研究表明,这种光毒性是由于光动力疗法(PDT)和光活化化疗(PACT)作用的结合,这是由活性氧的产生和肽摄取的肽产生的。最后,在皮下U87mg胶质母细胞瘤小鼠模型中的体内研究表明,注射后12小时12小时有效地在肿瘤中有效地积累了[1] Cl 2,其中绿光辐照比非核心的模拟拟态谱系复合物产生更强的肿瘤作用[2] Cl [2] Cl 2。考虑到治疗的小鼠缺乏全身毒性,这些结果表明了基于光敏的整联蛋白靶向氟苯甲酸抗癌化合物的高潜力,用于在体内治疗脑癌。
1 俄亥俄州立大学电气与计算机工程系,美国俄亥俄州哥伦布 43210。2 Lumileds LLC,美国加利福尼亚州圣何塞 95131。3 俄亥俄州立大学材料科学与工程系,美国俄亥俄州哥伦布 43210。*通讯作者:rahman.227@buckeyemail.osu.edu 摘要:我们展示了通过高效隧道结实现的低开启电压 P 向下绿光 LED。由于 (In,Ga)N/GaN 界面中的极化场排列具有 p 向下方向,与传统的 p 向上 LED 相比,电子和空穴注入的静电耗尽势垒降低了。具有 GaN 同质结隧道结的单个 (In,Ga)N/GaN 异质结构量子阱有源区在 20A/cm 2 时表现出非常低的 2.42V 正向工作电压,当电流密度高于 100 A/cm 2 时,峰值电致发光发射波长为 520 nm。底部隧道结具有最小的电压降,能够实现向底部 p-GaN 层的出色空穴注入。III 族氮化物半导体在光电子学和电子学 1-12 中的广泛应用具有重要的技术意义,并已广泛应用于照明和显示应用。虽然过去十年来,紫/蓝光发射波长范围内的 GaN 基发光二极管的效率和功率输出有了显着提高,但较长波长的发射器仍然表现出较低的效率。对于为更长波长设计的发射器,(In,Ga)N 量子阱中的铟摩尔分数会导致与更大的晶格失配、量子阱内的缺陷以及阱-势垒界面处更高的极化片电荷密度相关的挑战,所有这些都会导致器件性能下降。13-16