在本文中,我认为混合仿生系统中的人工组件不起直接解释作用,即在模拟方面,在其所嵌入系统的整体背景中。更准确地说,我认为确定此类人工设备输出的内部程序,替代生物组织并连接到其他生物组织,不能用于直接解释它们所替代的生物组件的相应机制(因此不能用于解释确定此类仿生模型复制的整体生物或认知功能的局部机制)。我基于使用最小认知网格 (MCG) 进行这一分析,这是 Lieto (人工智能认知设计,2021) 中提出的一种新框架,用于对生物和认知启发的人工系统的认识论和解释地位进行排名。尽管缺乏来自人工组件的直接机械解释,但我认为混合仿生系统可以发挥间接解释作用,类似于使用整体结构设计方法(但包括部分采用功能组件)构建的一些人工智能系统所发挥的作用。特别是,生物系统部件的人工替换可以提供 i)在混合生物-人工系统整体功能背景下对该部件的局部功能说明;ii)对与此类人工设备相连的生物元素的结构机制提供整体见解。
在本文中,我认为混合仿生系统的人工组成部分不起直接的解释作用,即,在模拟的术语中,在它们嵌入的系统的总体上。更准确地说,我声称确定这种人工设备的输出,替换生物组织并与其他生物组织相关的内部程序不能直接解释它们代替它们的生物组分的相应机制(因此,无法用来解释该本地机制来解释该生物学或认知的局部机制,以确定这种总体或认识性的模型。i对使用最小认知网格(MCG)的分析进行了这种分析,这是一个在Lieto中提出的新框架(人工思维的认知设计,2021年),以对生物学上和认知上平淡的人工系统的认识论和解释性状态进行排名。尽管缺乏人工组件的直接机械解释,但是我还认为,混合仿生系统可以具有与使用整体结构设计方法构建的AI系统相似的间接解释作用(但包括部分功能组件)。尤其是,生物系统部分的人工置换可以为i)在混合生物学 - 人工系统的整体功能和ii)全球洞察力的整体功能中提供该部分的局部功能说明,以实现与此类艺术元素相关的生物学元素的结构机制。
摘要。背景/目的:口腔鳞状细胞癌 (OSCC) 是一种侵袭性恶性肿瘤,因为其局部转移和远处淋巴结转移的能力增强。广泛的细胞遗传学分析已检测到 OSCC 中的染色体不稳定性 (CI) 模式,包括大量染色体数值改变,例如多体性和偶尔的单体性,这些改变对恶性肿瘤的生物学行为产生负面影响。我们的目的是研究 OSCC 中 17 号染色体 (Chr 17) 数值失衡的频率和影响。材料和方法:使用 50 (n=50) 个福尔马林固定、石蜡包埋的原发性 OSCC 组织切片。实施显色原位杂交 (CISH) 来检测 Chr 17 着丝粒数值失衡。关于 CISH 载玻片中的筛选过程,实施了一种新颖的实时参考和校准网格平台。结果:在所检测的 50 个病例中,有 12 个(24%)观察到 Chr 17 的多拷贝。在 50 个组织切片中,有 10 个(20%)观察到多体性,在 50 个组织切片中,有 2 个(4%)观察到单体性,而其余的病例呈现正常的二倍体模式(38/50-76%)。
摘要 - 这项工作提出了一种基于地理空间和电网分析的重型电动汽车(EV)的快速充电站的位置选择的系统方法。地理空间分析基于道路网络和现有支持基础架构的现实世界地理信息系统(GIS)数据。基于节点级别对分配系统电压和功率损耗的潜在影响的分析实施网格分析。使用来自加利福尼亚州的现实,三相,不平衡的分配馈线和提取现实世界中的GIS数据的案例研究,用于证明提议的方法论在考虑电动和现有运输基础设施的重型电动汽车的快速充电站的位置选择中,提出的方法的透度和有效性。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
C125.1通过淋巴结和网格分析了解基本电路。了解C125.2将网络定理应用于复杂的网络。应用C125.3找到网络的瞬态响应和稳态响应。应用C125.4了解耦合电路的基本概念了解C125.5解释Laplace域中的电网。了解C125.6计算两个端口网络的参数。应用工程研讨会(23A0302P)C126.1在现实生活中应用木材工作技能应用C126.2 C126.2在现实生活中,使用金属纸构建不同零件的应用C126.3应用C126.3在工业应用中开发各种拟合模型应用于工业应用中,应用C126.4应用于C126.5应用程序应用于诸如基本电路的各种型号应用于C126.5应用交流英语实验室(23A0010P)C127.1了解英语语音,压力和语调以更好地听力练习
电子与通信工程节点和网格分析、叠加、戴维南定理、诺顿定理、线性电路(RL、RC、RLC)的时间和频域分析连续时间信号:傅里叶级数和傅里叶变换、线性时不变系统:属性、因果关系、稳定性、卷积、频率响应二极管电路:削波、钳位、整流器、BJT 和 MOSFET 放大器:偏置、小信号分析、运算放大器电路:放大器、微分器、积分器、有源滤波器、振荡器、数字表示:二进制、整数、浮点数、组合电路:布尔代数、逻辑门、序贯电路:锁存器、触发器、计数器、数据转换器:采样和保持电路、ADC、DAC、机器指令和寻址模式、算术逻辑单元(ALU)、数据路径、控制单元、指令流水线、反馈原理、传递函数、框图表示、信号流图、数字调制方案:ASK、PSK、FSK、QAM、带宽和通信系统。
能量过渡基于几个支柱,包括加热,运输和工业的电气,以更好地利用可再生能源。这改变了能源系统的地理位置,其中功率从集中生产到更加地理分布。电气将为电力系统增加新的,大点的需求。分布式生成,点需求和更高水平的电力过境都表明网格影响超出了设计水平。同时,过渡依赖于潜在的不匹配问题的地方和国家一级的协调行动。本文对丹麦较大的地区探究了这些发展。基于对地方行动的调查,它研究了跨性别任务网格是否可以承受变化以及网格限制在何种程度上为工业发展造成了障碍。这项工作基于基于地理信息系统(GIS)的生产和需求分析,基于调查的利益相关者咨询,以揭示预期的需求和生产开发以及网格分析。结果表明,传输系统限制了发展,并且权限不仅应基于市政当局报告的当地条件,而且还应考虑空间分布的国家目标。因此,这需要改善管理级别之间的协调。
糖尿病是一种慢性代谢紊乱,其特征是血糖升高,对健康造成重大风险,例如心血管疾病以及神经、肾脏和眼睛损伤。有效管理血糖对于糖尿病患者来说至关重要,可以减轻这些风险。本研究介绍了 Glu-Ensemble,这是一种深度学习框架,旨在为 2 型糖尿病患者提供精确的血糖预测。与其他预测模型不同,Glu-Ensemble 解决了与小样本量、数据质量问题、对严格统计假设的依赖以及模型复杂性相关的挑战。它通过利用更大的数据集来提高预测准确性和模型通用性,并减少许多预测模型固有的偏差。与患者特定模型相比,该框架的统一方法消除了初始校准时间的需要,有助于立即为新患者预测血糖。所得结果表明,Glu-Ensemble 在准确性方面超越了传统方法,以均方根误差、平均绝对误差和误差网格分析来衡量。 Glu-Ensemble 框架成为预测 2 型糖尿病患者血糖水平的有前途的工具,值得在临床环境中进一步研究其实际应用。