获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 在社交网络广告的不断发展的景观中,数据的数量和准确性在预测模型的性能中起着至关重要的作用。然而,鲁棒预测算法的发展通常受到现实数据集中存在的有限尺寸和潜在偏差的阻碍。本研究介绍并探讨了社交网络广告数据的生成增强框架。我们的框架探索了三个用于数据增强的生成模型 - 生成对抗网络(GAN),变异自动编码器(VAE)和高斯混合模型(GMMS) - 以丰富社交网络广告分析有效性的上下文中的数据可用性和多样性。通过执行特征空间的合成扩展,我们发现通过数据增强,各种分类器的性能已被定量改进。此外,我们比较了每种数据增强技术带来的相对性能增长,从而为从业者提供了选择适当的技术以增强模型性能的见解。本文通过表明综合数据增加可以减轻社交网络广告领域中的小型或不平衡数据集施加的限制,从而有助于文学。同时,本文还提供了有关不同数据增强方法的实用性的比较观点,从而指导从业者选择适当的技术来增强模型性能。