由于流量需求和网络连接用户数量的增加,移动网络的能耗不断增加。为了确保移动网络的可持续性,能源效率必须成为下一代移动网络的关键设计支柱。在本文中,我们从两个角度来提高 5G 及更高网络的能源效率,即最小化网络能耗和节能网络架构设计。在本文的第一部分,我们重点关注基站 (BS) 的节能方法,基站是移动网络中能耗最高的组件。我们从移动网络运营商那里获得了一个包含网络负载信息的数据集。由于数据的时间粒度较粗,使用移动网络流量数据训练 ML 算法进行睡眠模式管理决策是一项挑战。我们提出了一种考虑到到达突发性的移动网络流量数据再生方法。我们提出了基于 ML 的算法来决定何时以及将 BS 置于睡眠状态的深度。目前关于在网络管理中使用 ML 的文献无法保证任何服务质量。为了解决这个问题,我们将基于分析模型的方法与 ML 相结合,其中前者用于网络中的风险分析。我们定义了一种新的指标来量化决策风险。我们设计了一个数字孪生,它可以模拟具有高级睡眠模式的真实 BS 的行为,以持续评估风险并监控 ML 算法的性能。仿真结果表明,与基线相比,使用所提出的方法可以获得相当大的能源节省,而延迟用户数量可以忽略不计。在论文的第二部分,我们研究并模拟了基于虚拟化云 RAN 的云原生网络架构的端到端能耗和延迟,从而形成了开放式 RAN 的基础。如今,大型电信运营商就基于混合 C-RAN 的开放式 RAN 架构达成了共识,本文将对此进行研究。从传统的分布式 RAN 架构迁移到基于混合 C-RAN 的网络架构在能耗和成本方面具有挑战性。我们从 OPEX 和 CAPEX 两个方面对迁移成本进行建模,并考虑未来流量预测对虚拟化云原生架构进行经济可行性分析。考虑到前传和光纤链路的基础设施成本,尚不清楚在什么条件下基于 C-RAN 的架构比 D-RAN 更具成本效益。我们制定了一个整数线性规划 (ILP) 优化问题,以优化设计前传,从而最小化迁移成本。我们使用商业求解器以最佳方式解决问题,并提出基于 AI 的启发式算法来处理大问题规模的可扩展性问题。处理网络能耗和延迟之间的权衡是网络设计和管理中的一个挑战性问题。在多层混合 C-RAN 架构中,我们制定了一个 ILP 问题,通过将热门内容存储在更靠近用户的边缘来优化延迟并最小化网络能耗。此外,我们研究了网络中总能耗和占用带宽之间的权衡。我们证明智能内容放置不仅可以减少延迟,还可以通过在性能指标之间找到折衷来节省能源。为了实现最小化网络能耗的类似目标,我们提出了一种端到端网络切片方法,其中逻辑网络针对特定服务进行量身定制。根据文献,端到端网络切片针对
网络切片是移动网络中一种新兴的模式,它利用 NFV 在同一物理网络基础设施上实现多个虚拟网络(称为切片)的实例化。运营商可以为每个切片分配专用资源和定制功能,以满足现代移动服务高度异构和严格的要求。管理网络切片下的功能和资源是一项具有挑战性的任务,需要在所有网络级别做出有效决策,在某些情况下甚至是实时决策,这可以通过在网络中集成人工智能 (AI) 来实现。我们概述了基于 AI 的网络切片管理的总体框架,在切片生命周期的不同阶段引入 AI,从准入控制到网络核心和无线接入的动态资源分配。在网络切片中合理使用 AI 会为运营商带来巨大的利益,在代表性案例研究中,预期性能提升在 25% 到 80% 之间。
每一天都有关于网络攻击的新闻。恐惧蔓延,许多错误观念流传。这项调查旨在展示如何将所有这些关于网络的不确定性转化为可控的风险。在回顾网络风险的主要特征之后,我们考虑了网络空间的三个层次:硬件、软件和心理认知层。我们问自己,这种风险与其他风险有何不同,建模是如何解决的,需要如何发展,以及网络风险管理有哪些多方面的方面。这项广泛的探索描绘了一门正在形成的科学,并指出了建设一个有韧性的社会需要解决的问题。
在哪里可以找到我的业务合作伙伴的技术能力并联系到合适的联系人以建立数字连接?Klaas Kurz,Schenker AG 运营商连接经理
1。关注UCLP优先级1患者组:CVD不在他汀类药物上•讨论不开处方他汀类药物的原因(例如,不遵守,停止了几个月,检查记录?他汀类药物重复处方一段时间未收集)•他汀类药物犹豫 - 请参阅SWL指南共享决策表•使用SNOMED代码和/或根据患者重新启动HI的文档决策原因•增强行为干预和生活方式2。机会主义UCLP优先级2患者组:CVD次优汀剂量3。第3组CVD患者在最大剂量病史上,但非HDL> 2.5mmol/L(nice建议至少减少40%)通常只需要重复血液4。鉴定患者处于最大风险,并通过包括Hist和Ezetimibe在内的适当疗法来优化他们的治疗;确定多发性且您可以在一次咨询中进行多种干预
摘要 - 本文提出了一个全面的风险评估模型,以关注气候条件和植被管理对中断风险的影响。使用包含停电记录,流星指标和植被指标的数据集,本文开发了一个逻辑回归模型,该模型优于几个替代方案,有效地确定了高度不平衡的数据中的风险因素。关键特征影响中断包括风速,植被密度,量化为增强的植被指数(EVI)和雪型,潮湿的雪和秋天条件表现出最大的积极作用。分析还显示了复杂的相互作用,例如风速和EVI的综合作用,表明植被密度可以缓解大风对停电的影响。基于618个样本的测试数据集的仿真案例研究表明,该模型在误差公差±0的误差范围内达到了80%的匹配率。05,展示了提出模型的有效性和鲁棒性,同时强调了其潜力,以告知预防策略,以减轻高风险环境条件下电力分配网络中的中断风险。未来的工作将整合LiDar的植被高度数据,并探索替代模型方法以捕获潜在的非线性关系。
摘要 - 本文提出了一个全面的风险评估模型,以关注气候条件和植被管理对中断风险的影响。使用包含停电记录,流星指标和植被指标的数据集,本文开发了一个逻辑回归模型,该模型优于几个替代方案,有效地确定了高度不平衡的数据中的风险因素。关键特征影响中断包括风速,植被密度,量化为增强的植被指数(EVI)和雪型,潮湿的雪和秋天条件表现出最大的积极作用。分析还显示了复杂的相互作用,例如风速和EVI的综合作用,表明植被密度可以缓解大风对停电的影响。基于618个样本的测试数据集的仿真案例研究表明,该模型在误差公差±0的误差范围内达到了80%的匹配率。05,展示了提出模型的有效性和鲁棒性,同时强调了其潜力,以告知预防策略,以减轻高风险环境条件下电力分配网络中的中断风险。未来的工作将整合LiDar的植被高度数据,并探索替代模型方法以捕获潜在的非线性关系。
本文考虑了考虑到不同类型的可调度单元,例如加油电池和微涡轮机以及不抗抗态度的单元,例如风力涡轮机和太阳能单元,介绍了网络微电网的最佳能源管理和操作。将车辆的恰好耗尽的作用转变为具有获利能力的积极作用,在这里部署了车辆到网格技术(V2G)。由于问题的复杂和非线性结构,设计了一个基于BAT算法的有效优化能源管理框架(带有修改)和无香的转换,以从经济的角度找到设备中最佳的操作点。由于电动车辆注入了高的不确定性,除了可再生能源输出功率变化外,还提出了无忧的变换以使分析更现实。在IEEE网络的微电网测试系统上,仿真结果倡导提出的方法的高功能和适当的性能。结果表明,在第一和第二场景中,总系统操作成本分别为53897.004 $和53711.704 $。此外,与确定性框架相比,考虑到问题的不确定性在第一和第二方面的成本函数值增加了0.586%和0.762%。文章信息