CRISPR筛查目前正在广泛的研究领域中应用,我们的实验室正在对癌细胞和胚胎干细胞进行研究。此外,我们开发了一种基于单细胞CRISPR分析后遗传破坏后随时间的表达变化来构建基因调节网络的方法。网络控制点还通过数学理论确定,公司正在使用CRIPSR系统通过多基因控制来控制细胞命运。
Roderick A. Earl 是新墨西哥州科特兰空军基地空军作战测试与评估中心总部安全与环境管理主任。他负责中心在 5 个支队和 11 个作战地点的 76 多个主要测试项目的所有安全、健康和环境合规方面的问题。他就安全、职业健康和环境问题向国防部长办公室、空军采购办公室部长、空军主要司令部和其他军种部门和联邦机构提供建议并代表 AFOTEC 指挥官。Earl 先生出生于加利福尼亚州奥兰治,作为空军家庭成员长大,曾与家人一起到过海外各个地方。他于 1985 年加入空军,在科罗拉多州洛瑞空军基地完成了弹药系统技术培训。他曾在菲律宾共和国克拉克空军基地担任弹药控制员;华盛顿州麦科德空军基地高级弹药检查员和运营主管;北达科他州大福克斯空军基地武器安全官和核保障官;新墨西哥州柯特兰空军基地第 377 空军基地联队职业安全主管。他在空军的最后两个现役职位是 AFOTEC 第 1 支队的临时安全经理和新墨西哥州柯特兰空军基地 AFOTEC 总部职业安全主管,在 2005 年从空军退役前,他专门从事化学和生物安全以及定向能安全。退役后,他进入联邦文职部门,并回到 AFOTEC 担任安全副主任,之后担任现任安全和环境管理主任。
接下来,到目前为止我们招募了初级、中级和高级的学员,但是从4月开始,每个级别的内容将会发生变化。到目前为止的初级班将变成中级班,之前的中级班和高级班将合并为高级班。最后,新的初级班将针对5年级和6年级的小学生和初中生。为了帮助您直观地了解变化,请参见下面的图表。现在新的小学5年级和6年级、高中→初级初级→中级中级、高级→高级请放心,内容的难度将保持与以前相同。我不会突然强迫你们学习更难的内容,只是课程名称会改变。
作为一名陆军军官和陆军部文职人员,威尔逊先生在联邦服务了 34 年多,曾担任过许多重要领导职务,例如:团队领导、小队领导、排长、空降步兵助理 S-3、空降步兵步枪连指挥官、陆军步兵科官、战略通信作战官、助理产品经理、技术/国际项目副主任和副产品经理。威尔逊先生曾参加过两 (2) 次作战行动,即正义事业行动(巴拿马)和伊拉克自由行动 (OIF)。
肺组织具有各种类型的上皮组织干细胞,在组织稳态中起着至关重要的作用,并因吸入化学颗粒以及病毒/细菌感染引起的急性损伤而再生。由于如此重要的作用,组织干细胞的功能障碍与呼吸道疾病有关。在今晚的研讨会上,我将介绍我们目前关于两个肺部干细胞的发现。气道基底细胞和牙槽II型(AT2)细胞。1)基底细胞通过从缓慢的循环转变为增殖,然后又回到缓慢的循环中,从而导致成人组织再生。尽管持续增殖会导致肿瘤发生,但调节这些转变的分子机制仍然未知。使用发育中的鼠气祖细胞的时间单细胞转录组学,我们发现TGF-β-ID2轴通常调节发育和再生过程中基础细胞中基础细胞中的增殖转变,并且其微调对正常再生至关重要,同时避免基础细胞增生。2)肺泡是肺纤维化起源的主要根源,已广泛研究了分子病因。调节肺泡上皮细胞纤维化状态的机制仍然难以捉摸。为了阐明上皮损伤和肌纤维细胞分化之间的因果关系,我们使用AT2干细胞培养建立了一个基于器官的肺纤维化模型。我们发现核心细胞系统在肺纤维发生中起着核心作用。该模型系统可用于研究较少炎症的肺纤维化的初始诱导,包括特发性肺纤维化。
福斯特先生从美国陆军退役后,担任国防部采购、技术和后勤事务副部长办公室采购管理副主任。作为副主任,他负责执行国防采购委员会和执行秘书处的职责,负责 90 多个主要国防采购项目,这些项目是陆军、海军和空军的采购类别 ID 项目,价值超过 16 亿美元,以及国防部内的 33 个 ACAT IA 主要自动化信息系统。他负责管理、监督和执行国防采购执行摘要和法定要求的国会选定采购报告,这些报告为国会、国防部采购、技术和后勤事务副部长和高级 OSD 领导提供了对项目采购状态的见解。
印度政府已采取多项措施,提升国防工业的本土能力。通过“印度制造”、“营商便利化”和国防工业走廊建设等举措,政府鼓励印度和外国投资者投资我们的国防领域。政府强调本土化,已确定许多国防产品将在国内生产,不会进口。现在正是开启自力更生新阶段的好时机,印度将在国内生产技术先进的设备。希望大家全心全意为实现自力更生和实现“自力更生印度”的愿景做出贡献。在国防现代化领域,印度正专注于采取整体方法,包括升级其常规部队并采用人工智能、无人机、网络战能力和太空防御技术等尖端技术。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。