企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。
期待已久的行政命令发行:监管评论过程是在实施任何新规则之前开始的:征求意见程序已在新规实施前启动:征求意见程序已在新规实施前启动:征求意见程序已在新规实施前启动:征求意见程序已在新规实施前启动:nancy A. Fischer,Matthew R. Rabinowitz,Zachary C. Rozen,Zachary C. Rozen,Ata A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. Annosterment in Derionstry of Samantha Franks和Johnna Purcell,美国2023年8月9日,国立了BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN BIDEN,关注国家的技术和产品。新的行政命令(EO)是拜登政府对出站投资规定的一年以上审议的高潮,并开始了为期45天的评论程序,以开发新的监管机制,以审查在外国关注国家的出站投资。在财政部提出的拟议规则制定通知(ANPRM)的情况下描述了此监管过程和所考虑的标准,其关键方面如下总结。2023年8月9日,美国总统拜登发布了一项《关于解决美国在受关注国家的某些国家安,美国总统拜登发布了一项《关于解决美国在受关注国家的某些国家安,45天的征求意见程序,以建立新的监管机制来审查以建立新的监管机制来审查以建立新的监管机制来审查“受关注国家” 的境外投资。美国财政部同日发布的《拟议规则制定预先通知》 的境外投资。美国财政部同日发布的《拟议规则制定预先通知》((((《预先通知 《预先通知(中具体描述了这一监管流程和讨论中的规则制定标准中具体描述了这一监管流程和讨论中的规则制定标准)财政部收到和审查评论后,ANPRM将随后是法规草案。政府没有为实施出站投资制度制定特定的时间表。这一新的行政命令指示美国财政部与美国商务部等其他政府机构协商,制定并实施旨在监重要的是,美国财政部的《预先通知 ANPRM 》本身并不是行政命令的实施规则,也不是 境外投资监管规则的文本草案。美国财政部将在收到并审阅意见后起草实施规则。拜登政 府并没有给出实施该项境外投资监管制度的具体时间表。 Notification and Prohibition Requirements 通报和禁止的要求 The EO directs the Department of Treasury, in consultation with other agencies such as the Department of Commerce, to establish and implement a new national security program aimed at monitoring outbound investments.
a 海南医学院基础医学与生命科学学院海南省干细胞研究院、海南省热带转化医学教育部重点实验室、海南省热带环境脑科学研究与转化重点实验室,海口 571199 b 香港理工大学工程学院生物医学工程系,香港,中国 c 海南医学院第二附属医院整形外科,海口 570100,中国 d 中科综合医疗转化中心研究院(海南)有限公司,海口 571199,中国 e 淄博市中医院药理科,淄博 255300,中国 f 济宁医学院临床医学院,济宁 272002,中国 g 海南省生物智能材料与生物医疗器械工程研究中心、海南省功能材料与分子影像重点实验室、海南省医学科学院急救与创伤学院海南医学院,海口 571199 h 海南医学院急救与创伤教育部重点实验室,海口市创伤重点实验室,海南省创伤与灾难救援重点实验室,海南医学院第一附属医院,海口 571199 i 海南医学院第二临床学院,海口 571199
该体系结构还指定了几个参考点。RP-AN-1,RP-AN-2,RP-AN-3和RP-AN-6是KB子系统和底层网络之间的参考点,动态适应子系统,自治引擎,E2E网络编排和编排器,以启用这些子系统的KB访问KB。RP-AN-4是自主引擎和动态适应子系统之间的,可为动态适应子系统提供进化探索和实验功能。RP-AN-5位于动态适应子系统和底层网络之间,随着底层网络条件在运行时的变化,将控制器的选择和集成到底层网络。RP-AN-7,RP-AN-8和RP-AN-11是AN编排者和KB之间的参考点,分别是自主引擎和动态适应子系统,以使An Orking Trator能够管理AN和AN和LISECYCLE中的工作流程和流程。RP-AN-9,RP-AN-10,RP-AN-12是E2E网络乐团和编排者,自治引擎和动态适应子系统之间的参考点,由E2E网络编排器使用,这些系统用于管理和机弦乐网络实体。RP-AN-13是E2E网络编排和底层网络之间的参考点,用于管理和编排底层网络中的控制网络实体。
1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。 巨摩尔。 化学。 物理。 ,2023,224,2300122。 2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。巨摩尔。化学。物理。,2023,224,2300122。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。中文J. Polym。SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。,2018,36(4),445-461。3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。评论。compos。A部分appl。SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。制造。,2015,73,204-231。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。碳,2021,173,1020-1040。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。Nanoscale,2016,8(26),12977-12989。6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。6 Yu,L。M。; Huang,H。X.使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。聚合物,2022,247,124791。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。polym。测试。,2023,124,108068。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。 ACS Nano,2022,16(2),1734-1758。 9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。ACS Nano,2022,16(2),1734-1758。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。compos。SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。技术。,2019,181,107710。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。巨摩尔。mater。eng。,2020,305,2000343。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。J.胶体界面科学。,2022,606,223-235。12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。compos。A部分appl。SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。制造。,2023,168,107486。13陈梦杰,李志健,周宏伟,刘汉斌。细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。高分子学报,2023,54(11),1740-1752。14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。高分子学报,2022,53(6),617-625。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。 acs appl。 mater。 接口,2022,14(13),15504-15516。 16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。acs appl。mater。接口,2022,14(13),15504-15516。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。ACS Nano,2021,15(6),9690-9700。17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。17 Su,F。C。; Huang,H。X.具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。acs appl。mater。接口,2023,15(48),56328-56336。18田信龙,黄汉雄。具有较高回弹性的poe基微孔复合材料的传感性能。高分子学报,2023,54(2),235-244。