a 反应条件:0.5 mmol HMF;无氧化催化剂;O 2 ,1.0 MPa;H 2 O,10 ml;温度,120 o C;反应时间,18 h;NaHCO 3 /HMF=2。b DFF、HMFCA、FFCA 和 FDCA 分别表示 2,5-二甲酰基呋喃、5-羟甲基-2-呋喃羧酸、5-甲酰基-2-呋喃羧酸和 2,5-呋喃二羧酸。c 碳平衡基于可检测产物,包括 DFF、FFCA、HMFCA、FDCA、甲酸、乙酰丙酸、2,5-呋喃二甲醇 (DHMF) 等。d 其他包括腐殖质和 HPLC 无法检测到的其他产物。
这项工作旨在从静态和动态的角度评估在铁离子存在下基于聚羧酸的尺度抑制剂的性能(FE III)。分别根据NACE TM0197-2010和NACE TM31105-2005标准进行静态(JAR测试)和动态(管阻塞测试)测试。在油井的流动条件下确定最低抑制浓度(LIC)。此外,还评估了Fe III离子浓度对降水过程的影响。通过X射线衍射(XRD),红外光谱(FTIR)和扫描电子显微镜(SEM)分析量表沉积物。结果表明,在没有Fe III离子的情况下,尺度抑制剂在化学上与所选盐水具有30 mg L -1的lic含量。在Fe III离子的存在下,抑制剂被证明是效率低下且不兼容的,因此无法确定LIC。组合的XRD,FTIR和SEM分析使我们能够将抑制剂的作用机理识别为络合物之一,Poly(羧酸)-ca 2+。此外,在Fe III离子存在下进行的分析表明,Caco 3晶体的结尾形态发生了显着变化。此外,已经证明,Fe III离子显着影响抑制剂的性能。最后,结果表明,在没有高浓度的Fe III离子的情况下,聚(羧酸)尺度抑制剂可以是减轻因油井中无机尺度沉积而导致的运营成本的选择。
表面活性代谢物(例如生物表面活性剂)通常是细胞外产生的,因为这些分子具有可变的两亲性结构,可减少sur的面部和界面张力(Twigg等人2021)。这些两亲性结构具有不同的极性作用,因为它们由不同的亲水性和水力恐惧症部分组成,它们基于结构和功能对生物表面活性剂进行分类。这些两亲性结构的疏水部分源自脂肪酸或其衍生物,而亲水性裂缝率是源自肽,碳水化合物,脂肪醇,羧酸,羧酸,碳水化合物,碳水化合物,氨基酸,氨基酸或磷酸盐或磷酸盐或磷酸盐(Eldin等。 2019)。 细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。 细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利2019)。细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利
质子转移使自然界和人造技术中的重要过程成为可能。然而,控制质子传导和利用生物材料制造设备仍然是一项挑战。更困难的是设计基于蛋白质的块状材料,没有任何功能性起始支架供进一步优化。在这里,我们展示了质子传导蛋白质材料的合理设计,超过了已报道的蛋白质系统。通过探索从内在无序线圈到超荷电纳米桶到包含蛋白质超荷电多肽嵌合体的分层蜘蛛片的各种序列,一步步进化出富含羧酸的结构。后一种材料的特点是相互连接的片纳米域,其表面由羧酸基团修饰,形成自支撑膜并允许在水合状态下进行质子传导。在 RH = 90% 时,膜显示出 18.5 ± 5 mS/cm 的非凡质子电导率,比其他蛋白质装置高一个数量级。这种设计范例为连接人工和生物系统的生物质子装置制造提供了巨大的潜力。
对扑热息痛的各种配方的定量分析英国药典方法用于分析扑热息痛,涉及将其用1 MOT DM -3 -3 -3硫酸在反流下加热。这是一种直接的,酸催化的,将酰胺水解为胺和羧酸。然后用氧化剂,硫酸铵(LV)硫酸盐使用铁蛋白作为指示剂,将形成的4-氨基苯酚滴定。第一个反应如下:
摘要 氧化石墨烯 (GO) 涂层电极为酶促葡萄糖传感提供了极好的平台,这种传感是由葡萄糖氧化酶和电化学转导引起的。本文中,我们表明,将 GO 与壳聚糖 (GO + Ch) 混合后,GO 层对葡萄糖检测的灵敏度会加倍,如果利用壳聚糖与 GO (GO−Ch) 的共价结合,灵敏度会增加八倍。此外,复合材料 GO−Ch 的电导率适用于电化学应用,而无需 GO 还原,而这通常是 GO 基涂层所必需的。通过标准羧酸活化/酰胺化方法利用壳聚糖丰富的氨基侧链实现 GO 的共价改性。通过与使用未活化 GO 作为前体实现的临时合成对照样品进行比较,证明了功能化的成功。复合材料 GO−Ch 通过滴铸法沉积在标准丝网印刷电极上。与壳聚糖-GO 混合物和纯 GO 相比,结果表明,由于酶结合位点数量多和羧酸活化合成步骤中 GO 的部分还原,葡萄糖电化学响应具有更高的可靠性和效率。
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
A试剂和条件:(i)1)3F,40%甲醇KOH,反流,3 h;然后h 2 o,回流,过夜; 0.5 n HCl/et 2 o; 2)粗羧酸(1等),clco 2 et(1 equiv),et 3 n(5 equiv),ch 2 cl 2,0ºC,30分钟;然后,4·hcl(1 equiv)或6(1 equiv),Ch 2 Cl 2,Rt,3天,33%(5F,从3F和4),81%(7,从3F和6)总体上; (ii)1 m tbaf/thf,thf,rt,4 h,94%(76%的总收益率为5F通过7)。