中等雷诺数下的薄翼型动态失速通常与靠近前缘的小层流分离气泡的突然破裂有关。鉴于层流分离气泡对外部扰动的强烈敏感性,使用直接数值模拟研究了在不同水平的低振幅自由流扰动下 NACA0009 翼型截面上动态失速的发生。对于前缘湍流强度 Tu = 0 .02%,流动与文献中的干净流入模拟几乎没有区别。对于 Tu = 0 .05%,发现破裂过程不太平稳,并且在动态失速涡流形成之前观察到层流分离气泡中强烈的相干涡流脱落。非线性模拟与瞬态线性稳定性分析相辅相成,该分析使用最优时间相关 (OTD) 框架的空间局部公式对破裂分离泡中层流剪切层的时间相关演化进行分析,其中非线性轨迹瞬时切线空间中最不稳定的部分随时间的变化被跟踪。得到的模式揭示了两种状态之间的间歇性切换。分离剪切层上的开尔文-亥姆霍兹滚转快速增长,分离泡过渡部分的二次不稳定性复杂化。后者的出现与线性子空间内瞬时增长率的大幅飙升以及非线性基流的更快转变有关。这些强烈的增长峰值与随后从层流分离泡中脱落的能量涡流密切相关。
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
• 滞后:AIR 403 调节控制电路现在包含滞后。一旦电池充满电,这将使涡轮机锁定在静音调节模式。当涡轮机感应到电池电压略低于满电电压时,它会再次开始发电。这意味着,对于工厂设置的 12V 涡轮机,当电池电压达到 14.1V 时,涡轮机将进行调节(关闭),当电压降至略低于满电电压的 12.6V 时,涡轮机将恢复充电。浪费的输出最少,因为 12.6V 以上的非充电电池电压主要代表“表面电荷”,能量很少。此功能可防止涡轮机在调节模式内外波动,从而使机器更安静、性能更好。 • 新型电子设备:AIR 403 包含一个专用电源整流器,可将多余的热量直接散发到机身上。调节电子设备已得到增强,可在最极端的操作条件下实现更强大的控制和可靠性。 • 新型交流发电机:新型 AIR 403 内置了更强大的交流发电机。在旋转叶片轴时可以感觉到更强大的永磁转子;用手指旋转轴时可以感觉到轻微的“卡住”。这是正常现象,当叶片开始旋转时很快就会克服。 • 新型叶片:转子叶片经过重新设计,采用新型、高效的真翼型。全新的精密注塑模具可生产出具有卓越一致性的叶片,从而实现
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 05 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与当地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 5 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与本地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
1.4 定义 A AEO 所有发动机可操作的飞机类别 在法规中,不同的规则适用于不同的类别 Far23 特技飞行 设计用于承受高 g 负载以实现高级飞行。仅限制飞行测试。实用有限的特技动作。最大 90 度倾斜。正常 正常动作。最大 60 度倾斜。通勤 螺旋桨驱动,受正常类别限制。Far25 运输 正常动作。前三个类别的重量限制为 5650 公斤,乘客限制为 9 人,第四个类别的重量限制为 8600 公斤,乘客限制为 19 人,第五个类别没有重量或座位限制。高度 以英尺或米为单位测量的离地高度。AMC 参见 MAC。攻角 翼型弦线与相对气流之间的角度。纵横比 机翼细长的量度。AR = b 2 /S,其中 b = 翼展,S = 机翼参考面积。B 平衡 不同的重量分布在整个飞机上,以平衡飞机并获得所需的重心位置和范围。银行 可以取出现金的地方。这里与飞机在滚转轴上的倾斜程度有关。以度为单位。BFL 平衡场长度。参见演示。BWB 翼身融合。C CD 0 零升力阻力系数是与升力无关的飞机阻力。重心 固体的重量集中在一点。CGR 参见爬升梯度 爬升率 与飞机在垂直平面上的移动速度有关。以 ftp(英尺/秒)为单位
未来的风力涡轮机设计必须包括风洞测试,以产生用于设计的高质量实验数据。这些实验数据(包括翼型和整体系统性能)可用于验证和改进风力涡轮机叶片和系统的设计。目前,风力涡轮机的实验测试很少,大部分空气动力学设计都是使用 PROFIL 和 XFOIL 等计算工具完成的。计算流体动力学 (CFD) 预测正在改进,将成为风力涡轮机叶片设计的杰出工具;但是;这些代码不够稳健,无法预测低雷诺数下的性能。风力涡轮机的 CFD 代码几乎没有经过实验室验证,尤其是低雷诺数的 CFD 代码。通常,风力涡轮机都是按全尺寸设计和制造的。因为风洞测试通常是在现场测试,以与设计预测进行比较。然而,现场测试也可能是一个非常昂贵的过程。本章将重点介绍对风力涡轮机叶片进行实验测试的必要性,以确定在典型雷诺数下运行的翼型升力和阻力数据,以及对风力涡轮机系统(叶片和发电机)进行测试以确定整体风力涡轮机性能。这种类型的测试应该在建造全尺寸机器之前完成,因为通过风洞测试可以达到更好的设计。叶片元素动量理论 (BEMT) 通常用于小型风力涡轮机的设计,这种设计方法在很大程度上取决于精确的翼型数据的使用。因此,对于小型风力涡轮机,在适当的雷诺数下获取的高质量实验翼型数据对于准确设计和预测发电量是必不可少的。所呈现的数据适用于风洞
M.Tech. 课程内容 AS 3010 航空航天技术概论 3003 航天任务类型、环境、天体动力学:轨道力学基础(双体运动、圆周速度和逃逸速度、椭圆双曲和抛物线轨道运动);基本轨道机动。 火箭推进基础:上升飞行力学:运载火箭选择。进入大气层;进入飞行力学;进入加热。姿态确定和控制;基本概念;旋转动力学回顾;刚体动力学;扰动扭矩;被动姿态控制;主动控制;姿态确定。热控制、航天器功率、电信。 AS 5010 工程空气动力学与飞行力学 3003 流体力学基本方程。无粘流。流函数。速度势。二维不可压缩流:拉普拉斯方程及其解。翼型流;保角变换,薄翼型理论。有限机翼简介;普朗特升力线理论。边界层和分离对翼面流动的影响。大气。飞机基本性能评估。稳定性和控制简介。 AS 5020 气体动力学和推进要素 3003 气体动力学基本方程。一维等熵流。马赫波,冲击波。带有冲击、传热和摩擦的一维流动。二维冲击。普朗特-迈耶流。线性化二维亚音速流;普朗特-格劳特/戈特特变换。线性化超音速流;阿克雷特理论。吸气式和火箭推进系统的分类及其工作原理。螺旋桨理论,不同类型发动机的性能。高度和前进速度的影响。燃气涡轮发动机部件、构造和性能。 AS 5030 飞机和航空航天结构 3003 飞机分类、飞行原理、飞行控制、基本仪器和飞机系统、直升机机翼分析。剪切中心。封闭和开放管的弯曲和扭转。多室管。柱和梁柱。板和板桁组合的弯曲和屈曲。机身分析。实验技术;应变计、光弹性、离散和连续系统的振动。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
改进成像质量有可能可视化以前看不见的大脑构建基块,因此是神经科学的巨大挑战之一。近年来,新的组织清除技术的快速开发试图解决厚脑样品中的成像折衷,尤其是对于高分辨率光学显微镜,清除介质需要与客观沉浸式介质的高折射率相匹配。这些问题在昆虫组织中加剧了,其中许多(最初充满了空气的)气管管在整个大脑中分支在整个大脑中分支会增加光的散射。迄今为止,很少有研究系统地从系统地量化了使用客观透明度和组织收缩测量值的清除方法的好处。In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index ( n ): 2,2 ′ -thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n分别= 1.52和1.47)和Rapiclear(也有n = 1.52和1.47)。,我们通过将新鲜解剖的大脑与二翼型链的清除大脑进行比较,在有或不添加真空或乙醇预处理(脱水和再含水)中,以撤离气管系统的空气,测量了透明度和组织收缩。结果表明,乙醇预处理对于提高透明度非常有效,无论随后的清除介质如何,而真空处理几乎没有可测量的好处。乙醇预处理的Seedb2g和Rapiclear大脑的收缩率要比使用传统的MS/P方法少得多。此外,在较低的折射率下,与TDE和MS/p相比,这些最近开发的媒体更接近甘油浸入的指数,具有出色的透明度。繁琐的速度较小,但两者都提供了足够的透明度和折射率可调节性,可允许大型昆虫的全山大脑中局部体积的超分辨率成像,甚至是光片显微镜。尽管雷管储存的样品的长期永久性仍有待确定,但在室温下,我们的样品仍显示出良好的储存后荧光保存超过一年。