5.4 在 1.4Hz 激励下 4 ◦ 阵风激发的机翼根应变时间历史... 54 5.5 H 2 闭环机翼根应变对阵风激励的响应时间历史... 55 5.6 H 2 闭环外侧副翼偏转对阵风激励的时间历史 55 5.7 H 2 闭环内侧副翼偏转对阵风激励的时间历史... 56 5.8 阵风激励下 H ∞ 闭环翼根应变响应的时间历史 56 5.9 阵风激励下 H ∞ 闭环外侧副翼偏转的时间历史 57 5.10 阵风激励下 H ∞ 闭环内侧副翼偏转的时间历史 57 5.11 加权和加权翼根应变的 Bode 幅值图 . . . . . . . . . 59 5.12 采样时间为 0 . 01 s 的 H 2 合成 . . . . . . . . . . . . . . . 59 5.13 采样时间为 0 . 01 s 的 H ∞ 合成 . . . . . . . . . . . . . . . . . . . . . . . 60 5.14 标准化翼根应变对标准化阵风激励的响应的 Bode 图 60 5.15 标准化外侧副翼对标准化阵风激励的响应的 Bode 图 61 5.16 标准化内侧副翼对标准化阵风激励的响应的 Bode 图 61 5.17 H 2 闭环翼根应变对阵风激励的响应时间历史 . 62 5.18 H 2 闭环外侧副翼偏转对阵风激励的时间历史 62 5.19 H 2 闭环内侧副翼偏转对阵风激励的时间历史 . 63 5.20 H ∞ 闭环翼根应变对阵风激励的响应时间历史 63 5.21 H ∞ c 的时间历史
为了进行这项测试,我们建造了一个反作用结构来支撑右侧机翼,ILEF 测试件就安装在机翼上。我们设计了一组模拟机身舱壁的凸耳,直接与内翼根凸耳连接。这些定制凸耳上装有应变计,目的是估算与反作用结构连接处的负载分布。在最终安装到反作用结构上之前,我们在负载框架中对它们进行了单独校准,并施加了垂直和水平负载。本文重点介绍了选择仪表位置和方向的技术、校准程序和数据分析。最后,我们讨论了从这个项目中学到的一些经验教训。
分布在重心周围。纵向稳定性和控制力来自水平尾翼和升降舵,它们具有非常有用的力矩臂。垂直尾翼提供方向稳定性,使用方向舵进行方向控制。机翼/机身/起落架设置允许机翼在重心附近提供升力,并将起落架定位在飞机可以以起飞速度旋转的位置,同时提供足够的旋转而不会刮擦尾部。这种布置还可以降低修剪阻力。发动机位于机翼下方的吊架上。这种布置允许发动机重量抵消机翼升力,减少翼根弯矩,从而减轻机翼重量。这种发动机位置还可以设计成基本上没有不利的空气动力学干扰。
波音 747 的布局如图 4-1 所示。它符合上述标准。有效载荷分布在重心周围。纵向稳定性和控制力来自水平尾翼和升降舵,它们具有非常有用的力矩臂。垂直尾翼提供方向稳定性,使用方向舵进行方向控制。机翼/机身/起落架设置允许机翼在重心附近提供升力,并将起落架定位在飞机可以以起飞速度旋转的位置,同时提供足够的旋转而不会刮到尾部。这种布置还可以降低修剪阻力。发动机位于机翼下方的吊架上。这种布置允许发动机重量抵消机翼升力,从而减少翼根弯矩,从而使机翼更轻。这种发动机位置还可以设计成基本上没有不利的气动干扰。
摘要:马来西亚皇家空军大多数战斗机的机身结构已服役 10 至 20 年。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性成为其适航性评估的依据。使用各种无损检测方法确定飞机结构在超过 10 年的运行后的当前状况,并总结了它们的结果。此外,虽然有六个关键位置,但选择了翼根,因为它最有可能出现疲劳失效。使用模拟分析进一步分析了疲劳寿命。这有助于开发维护任务卡,并最终有助于延长战斗机的使用寿命。RMAF 使用安全寿命或损伤容限的概念作为其疲劳设计理念,采用了飞机结构完整性计划 (ASIP) 来监测其战斗机的结构完整性。在当前预算限制和结构寿命延长要求下,RMAF 已着手采用无损检测方法和工程分析。该研究成果将增强马来西亚皇家空军舰队其他飞机平台的 ASIP,以进行结构寿命评估或使用寿命延长计划。
Galaxy 是在 Astra SPX 的基础上发展而来的,使用相同的机翼,但翼根处跨度增加了两英尺,并增加了翼梢小翼,与全新的大截面(90 英寸直径)机身相匹配。IAI 有限公司生产了序列号 56 之前的飞机。2002 年,湾流宇航公司购买了型号合格证,并成立了一家名为湾流宇航有限公司的公司来持有和管理型号合格证。它被重新命名为 G200,并继续在以色列获得 IAI 的许可生产。GALP 是设计机构,负责配置控制,但 IAI 提供工程支持。该飞机的不同寻常之处在于,型号合格证仅定义了特定的配置,不包括飞机的外部喷漆和内部装饰及乘客设施。“绿色”生产飞机运往美国,在那里根据单独的 STC 批准进行内部安装。
Galaxy 是 Astra SPX 的改进版,使用相同的机翼,但翼根处跨度增加了 2 英尺,并增加了翼梢小翼,与全新的大型机身(直径 90 英寸)相匹配。序列号 56 之前的飞机均由 IAI Ltd. 生产。型号合格证于 2002 年由 Gulfstream Aerospace 购买,该公司成立了一家名为 Gulfstream Aerospace Limited Partnership 的公司来持有和管理型号合格证。它被重新命名为 G200,并继续在 IAI 的许可下在以色列生产。GALP 是设计机构,负责配置控制,但 IAI 提供工程支持。该飞机的不同寻常之处在于,型号合格证仅定义了特定配置,其中不包括飞机的外部喷漆及其内部装饰和乘客设施。“绿色”生产飞机飞往美国,内部安装根据单独的 STC 批准进行。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。