版权所有©2024 Fortinet,Inc。保留所有权利。fortinet®,fortigate®,forticare®和fortiguard®以及某些其他标记是Fortinet,Inc。的注册商标,此处的其他Fortinet名称也可以注册和/或Fortinet的普通法商标。所有其他产品或公司名称可能是其各自所有者的商标。的性能和其他指标,实际绩效和其他结果可能会有所不同。网络变量,不同的网络环境和其他条件可能会影响性能结果。Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract, signed by Fortinet's SVP Legal and above, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly identified in such binding written contract shall对Fortinet有约束力。为了绝对清晰,任何此类保修都将仅限于与Fortinet内部实验室测试相同的理想条件下的性能。Fortinet完全根据明示或暗示的任何盟约,代表和保证。Fortinet保留更改,修改,转让或以其他方式修改本出版物的权利,恕不另行通知,最新版本的出版物应适用。
摘要背景我们开发了一种机器学习(ML)模型,以预测早期胃癌(EGC)患者淋巴结转移(LNM)的风险,这些患者不符合现有的日本内窥镜可固定性标准,并将其性能与最常见的临床风险扫描系统(Ecura System)相比。方法,我们使用了来自21家经过内窥镜亚粘膜溶解(ESD)和/或在2010年至2021年之间的21家机构的EGC患者的数据。所有切除的EGC在组织学上均未满足当前的日本内窥镜可耐加固性标准。在所有患者中,有3,506名构成了开发基于神经网络的ML模型的训练队列,而536个构成了验证队列。由接收器操作特征曲线(AUC)下的面积测量的ML模型的性能与验证队列中的ECURA系统的性能进行了比较。结果LNM率分别为14%(503/3,506)和7%(39/536),分别为培训和验证队列。ML模型在验证队列中鉴定出患有AUC为0.83(95%置信区间,0.76–0.89)的LNM患者,而ECURA系统鉴定出具有0.77的LNM的患者,其AUC为0.77(95%置信区间,0.70-0.85)(0.70-0.85)(p = 0.006)(p = 0.006,DELONG TEST)。结论我们的ML模型的性能优于ECURA系统,用于预测不符合日本内窥镜可固定性标准的EGC患者的LNM风险。迷你抽象,我们开发了一种基于神经网络的机器学习模型,该模型可预测早期胃癌患者淋巴结转移的风险,这些患者不符合内窥镜可缓解性标准。
•将Galliapharm发电机出口线的雄性luer连接到无菌针(21g至23G)。•将小瓶1连接到Galliapharm发电机的出口线,通过将针头穿过橡胶隔隔板,然后将小瓶放在铅盾容器中。•根据使用Eckert&Ziegler提供的Galliapharm发电机的说明,将发电机直接通过针头将发电机洗脱到小瓶1中,以便用5 mL的洗脱器重新构造冻干粉末。手动或通过泵进行洗脱。•在洗脱结束时,通过从橡胶中隔中去除针头,与小瓶1断开发电机,然后立即(不要延迟缓冲液添加超过10分钟)在1-ml无菌Inringe中添加KIT反应缓冲液(((尺寸21G至23G),均为23G);如表1所确定的反应缓冲量)。•撤回注射器和0.2 µm无菌空气通风过滤器。