由于其优异的光学、电子和物理特性以及更好的可控物理尺寸调整,它填补了这一空白。此外,二维/二维范德华异质结构的层状结构性质最近引起了广泛关注。它们具有可调电子带隙、光吸收、高效的电荷分离和传输、耦合效应和低量子约束等有趣特性。12,14 – 17 Janus TMDs 材料与传统 2D 材料不同,引起了人们的浓厚兴趣。Janus TMDs 材料具有不对称晶体结构、固有平面外极化和压电性等独特特性。 18 – 23 2D/2D 范德华异质结构耦合非常重要,它会产生各种有趣的效果 24,25 这是一种结合不同 2D 材料各种特性的有用方法 26 以促进光伏技术创新。 27 通过将两个单层堆叠在一起,可以根据此优势和可调特性构建 MXO/MoX 2 异质结构。 28
摘要随着储能技术的快速开发,显着地评估了锂离子电池的运行状态,以确保其安全的操作并减少事故的可能性。对于现有模型的长期模拟时间和较低精度的问题,本文提出了一种基于数字双胞胎的热电耦合模型的锂离子电池的施工方法。首先,提出了锂离子电池的数字双结构系统。第二,考虑到热力学模型和等效电路模型的耦合效应,热电耦合模型是基于数字双平台ANSYS TWINBUILDER构建的。按顺序减少热力学模型,并将模拟时间缩短为SEC-OND级别,从而提高了模拟效率并满足数字双胞胎的实时仿真要求。此外,考虑到锂离子电池的操作插入物是可变的,因此,基于可变的遗忘因子递归最小二乘最小二乘算法的在线识别等效电路模型的参数。它更新模型的参数并提高了仿真精度。最后,通过模拟分析验证了模型的效率和准确性。
柔性和便携性。染谷隆雄教授团队在柔性太阳能电池领域做出了杰出贡献,近期他们提出了可弯曲超薄太阳能电池的概念,以透明聚酰亚胺(PI)为基底,厚度仅为1.3 mm,由于良好的适应性和抗拉能力,这类超薄有机太阳能电池显示出巨大的应用前景。13另一类重要的能源装置是柔性纳米发电机。王忠林教授课题组利用ZnO纳米线(ZnONWs)的压电特性和半导体耦合效应,首次将机械能成功地转化为电能,研制出世界上体积最小的发电机——压电纳米发电机。14–172012年,将具有不同摩擦特性的聚对苯二甲酸乙二醇酯(PET)和PI薄膜组装成第一台摩擦型纳米发电机,有效提高了装置的机电转换效率和电能输出,14
业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
我们报告了YBA 2 Cu 3 O 6 + X薄膜的非线性Terahertz第三谐波生成(THG)的测量。与常规超导体不同,THG信号开始出现在正常状态下,这与广泛掺杂水平的伪gap的交叉温度t *一致。降低温度后,THG信号在最佳掺杂样品中显示出低于T C以下的异常。值得注意的是,我们直接观察到THG信号的实时波形中的节拍模式。我们阐述的是,HIGGS模式在T C下方开发的HIGGS模式与已经在T *下面开发的模式伴侣,从而导致能级分裂。但是,这种耦合效应在被压倒性的样品中并不明显。我们探索了观察到的现象的不同潜在解释。我们的研究提供了对超导性和伪群之间相互作用的宝贵见解。
量子井纳米层通常显示单模激光,因为增益饱和抑制了其他模式的排放。相比之下,对于带有gan量子井的低语画廊模式的微台面激光器作为活性材料,观察到高于阈值的多模激光发射。这种有趣的发射特征表现出了以下事实:几种模式同时在激光开始时显示了输入 - 输出曲线中的特征扭结。纳米层的量子理论用于支持实验发现,并在存在增益饱和的情况下分析这种行为。在相邻模式之间的耦合效应被鉴定为多模磁力的起源,该构图通过类似于经典波浪混合效应的种群脉动在模式之间启动光子交换。降低了这种类型的模式耦合,并显示了增加模式间距。结果可以为在集成光子电路中的多模层应用铺平道路。
光子拓扑边缘状态表现出强大的操纵光传播的能力。尤其是全dielectric结构是支持拓扑状态的有前途的平台,在该平台中,通常通过具有各向同性结构的工程形状和晶格来获得非平凡的光子带。在这里,我们建议在由各向异性支柱组成的二维(2D)三角光子晶格中操纵拓扑阶段。发现,柱子或单位细胞的旋转伴随着复杂的耦合效应,可以注入自由度,以在琐碎和非平凡的拓扑相之间切换光子带结构。我们进一步制定了一个描述旋转诱导的拓扑跃迁的2D相图,并在电信波长的情况下证明了硅硅的耐极性稳健单向光传播。这项工作提出了一种操纵拓扑阶段和非平凡光子状态的替代方案,该方案有望对片上光操纵进行更有趣的探索。
使用光学信号摘要来实现应变信号的传感是触觉传感器的有希望的应用。但是,大多数研究现在都集中在Piezophotronic LED阵列上,这些LED阵列很难纳入基于SI的半导体行业。由于SI间接带隙引起的基于SI的设备的光电性能不佳,因此使用SI构造高密度发光设备一直是一件具有挑战性的。在这里,设计和制造了由P-SI微柱组成的基于SI的量子点发光装置(QLED)阵列,并研究了SI中应变偶联效应对基于SI基QLEDS的电致发光性能的机制。QD的引入很容易提供有效且可调节的光发射,并满足不同实际应用的要求。QLED的发射强度取决于注入的电流密度,并且可以通过应变耦合效应调节载体的运输过程。基于SI的光子设备与压力传感的组合可能会对电子皮肤和人类机器界面的领域产生重大影响。更重要的是,这项技术与主要基于SI的半导体行业完全兼容。因此,它在实现大规模的光子设备并扩展其应用程序场的整合方面表现出了希望。
我们开发了一种探针-样品相互作用中有限耦合量子测温的一般微扰理论,最高可达二阶。根据假设,探针和样品处于热平衡状态,因此探针由平均力吉布斯态描述。我们证明,仅通过对探针进行局部能量测量,就可以实现最终的测温精度——耦合精度达到二阶。因此,在这种情况下,试图从相干性中提取温度信息或设计自适应方案不会带来任何实际优势。此外,我们为量子 Fisher 信息提供了一个闭式表达式,它捕捉了探针对温度变化的敏感性。最后,我们用两个简单的例子来衡量和说明我们公式的易用性。我们的形式化方法没有对动态时间尺度的分离或探针或样品的性质做出任何假设。因此,通过提供对热灵敏度和实现它的最佳测量的分析见解,我们的结果为在有限耦合效应不能忽略的装置中进行量子测温铺平了道路。