摘要:本研究探讨了基于机器学习的中风图像重建在电容耦合电阻抗断层扫描中的潜力。研究了使用对抗神经网络 (cGAN) 重建的脑图像的质量。使用二维数值模拟生成监督网络训练所需的大数据。无撞击损伤和有撞击损伤的头部轴向横截面模型平均为 3 厘米厚的层,与传感电极的高度相对应。使用具有特征电参数的区域对中风进行建模,这些区域是灌注减少的组织。头部模型包括皮肤、颅骨、白质、灰质和脑脊液。在 16 电极电容式传感器模型中考虑了耦合电容。使用专用的 Matlab ECTsim 工具包来解决正向问题并模拟测量。使用数字生成的数据集训练条件生成对抗网络 (cGAN),该数据集包含健康患者和出血性或缺血性中风患者的样本。验证表明,使用监督学习和 cGAN 获得的图像质量令人满意。当图像对应于中风患者时,可以从视觉上区分,出血性中风引起的变化最为明显。继续进行图像重建以测量物理幻影是合理的。
低频电准静态场或阻容电路模拟(例如高压应用)在学术界和工业界已经很成熟 [1]–[8]。底层场近似忽略了电感效应,因此允许仅基于标量值电势的简化公式。但是,如果耦合电容、电感和电阻现象相关,则需要经典的麦克斯韦公式,或者——如果波的传播可以忽略不计——结合了电准静态和磁准静态情况的达尔文型混合公式,例如,参见 [9] 及其参考文献。对于频域中的全波公式,众所周知它们表现出低频不稳定性。问题源于麦克斯韦方程在静态极限下解耦为三个独立的静磁、静电和静态电流问题。具体来说,静磁问题需要测量,这在极限情况下很容易理解,但对于非常小但非零的频率来说,(在数值上)很麻烦。已经提出了几种稳定化公式,例如 Hiptmair [10]、Jochum [11]、Eller [12] 提出的公式,后来 Stysch [13] 和 Zhao [14] 也使用了这些公式。本文研究了与测量无关的电准静态场和电路公式的类似低频不稳定性。该问题最初在 [15]、[16] 中观察到:在静态极限下,电准静态
1. 电源反接 电源反接会损坏 IC。连接电源时应注意防止反接,例如在电源和 IC 的电源引脚之间安装外部二极管。 2. 电源线 设计 PCB 布局模式以提供低阻抗电源线。将数字和模拟模块的接地线和电源线分开,以防止数字模块的接地线和电源线中的噪声影响模拟模块。此外,在所有电源引脚处将一个电容器接地。使用电解电容器时,应考虑温度和老化对电容值的影响。 3. 接地电压 确保任何时候,即使在瞬态条件下,任何引脚的电压都不得低于接地引脚的电压。 4. 接地布线模式 当同时使用小信号和大电流接地线时,两条接地线应分开布线,但应连接到应用板参考点的单个接地,以避免大电流引起小信号接地的波动。还要确保外部元件的接地走线不会引起接地电压的变化。接地线必须尽可能短而粗以降低线路阻抗。 5. 热考虑 如果偶然超过了功耗额定值,芯片温度升高可能会导致芯片性能下降。如果超过此绝对最大额定值,请增加电路板尺寸和铜面积以防止超过 Pd 额定值。 6. 建议的工作条件 这些条件表示可以大致获得 IC 预期特性的范围。电气特性在每个参数的条件下都有保证。 7. 浪涌电流 首次为 IC 供电时,由于内部供电顺序和延迟,内部逻辑可能不稳定,并且浪涌电流可能瞬间流动,特别是当 IC 有多个电源时。因此,要特别考虑电源耦合电容、电源线、地线宽度和连接路由。 8. 在强电磁场下操作 在强电磁场下操作 IC 可能会导致 IC 发生故障。 9. 在应用板上测试 在应用板上测试 IC 时,将电容器直接连接到低阻抗输出引脚可能会使 IC 承受应力。在每个过程或步骤之后,务必将电容器完全放电。在检查过程中,在连接或从测试装置中移除 IC 之前,应始终完全关闭 IC 的电源。为防止静电放电造成损坏,请在组装过程中将 IC 接地,并在运输和储存过程中采取类似的预防措施。10. 引脚间短路和安装错误