摘要:目标:本文旨在验证一种可穿戴、不显眼的耳中心脑电图 (EEG) 设备(称为“EARtrodes”)的性能和物理设计,该设备使用早期和晚期听觉诱发反应。结果还将为该设备用作隐藏式脑机接口 (BCI) 提供概念验证。设计:该设备由定制耳机和符合人体工程学的耳后部件组成,内嵌电极由柔软而灵活的硅橡胶和碳纤维组合制成。通过对人耳道和耳周区域的形态和几何分析,获得了导电硅胶电极在耳道内的位置和耳后部件的最佳几何形状。还开发了一种完全导电的通用耳机,以评估通用、更实惠的解决方案的潜力。结果:早期延迟结果表明导电硅胶电极能够记录高质量的 EEG 信号,与传统镀金电极获得的信号相当。此外,延迟结果还表明 EARtrodes 能够可靠地从耳朵检测决策过程。结论:EEG 结果验证了 EARtrodes 作为耳内和耳内 EEG 记录系统的性能,该系统适用于听力学、神经科学、临床研究等领域的广泛应用,并且可作为非侵入式 BCI。
重型和轻型耳机配有入耳式或挂耳式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75P 还可与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。Covert Audio 套件有黑色或米色可供选择,并有 2 线或 3 线配置,包括耳机、麦克风和 PTT。
重型和轻型耳机配有入耳式或耳挂式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75Pe 还可以与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。隐蔽式音频套件有黑色和米色两种颜色,以及带耳机、麦克风和 PTT 的 2 线或 3 线配置。
重型和轻型耳机配有入耳式或耳挂式听力保护装置、带降噪技术的灵活吊杆麦克风以及标准或远程 PTT。XG-75P 还可与骨传导头骨耳机和喉部麦克风/耳机套件一起使用。Covert Audio 套件有黑色或米色可供选择,并有 2 线或 3 线配置,包括耳机、麦克风和 PTT。
未托管的热萃取,以及田间多个钻孔热交换器(BHES)的邻接性,可能导致地面上的不良热条件。无法正确控制的热异常被认为是闭环地热系统的严重风险,因为对地面的有害影响可能会导致性能严重,或者使操作系统与监管人日期的兼容性无效。本文提出了一个灵活的框架,用于整个生命周期中BHE领域的合并模拟优化。所提出的方法解释了地下特性和能耗的不确定性,以最大程度地减少操作过程中的热量提取引起的温度变化。描述性不确定性是作为监视温度与模拟温度变化的偏差引入的,而能量需求的变化似乎是针对预定需求的过量或不足的费用。通过通过温度测量来更新地面的热条件,在操作周期内连续执行优化,并能够生成修订后的负载分布。 在这项研究中,两个具有五个和26个铃的磁场被认为证明了该方法的性能。 顺序优化通过为更具战略性的负载平衡模式提供基础,并在每种BHE配置中分别提供约2.9 k和8.9 K的较低较低的TEM Perature异常,从而超过单步优化。在操作周期内连续执行优化,并能够生成修订后的负载分布。在这项研究中,两个具有五个和26个铃的磁场被认为证明了该方法的性能。顺序优化通过为更具战略性的负载平衡模式提供基础,并在每种BHE配置中分别提供约2.9 k和8.9 K的较低较低的TEM Perature异常,从而超过单步优化。
摘要 - 由于其在国内和工业领域中的广泛应用,因此在机器人技术中,孔洞操纵一直是一个长期存在的问题。由于感知和建模的进步,可变形的对象操纵吸引了越来越多的关注。本文重点介绍了这些问题的交集,其中必须将一个孔变形以允许钉入口。此任务的常见国内应用是将衣架穿过T恤的领口将其悬挂。我们证明,通过使用来自Gelsight传感器的多模式触觉反馈可以降低问题的复杂性。高分辨率接触检测有助于将掌握到T恤上合适的位置。使用触觉反馈跟踪力轨迹,我们的算法可以操纵大小和刚度的T恤,以使它们的领口封闭衣架。我们的实验结果表明与理论分析保持一致。我们预计我们提出的方法将更广泛地适用于需要同时估算和执行弹性对象的力轨迹的其他问题。
摘要 目的。本综述全面概述了耳脑电图 (EEG) 技术,该技术涉及记录放置在耳朵内或耳朵周围的电极的 EEG 信号,以及它在神经工程领域的应用。方法。我们使用多个数据库进行了彻底的文献检索,以确定与耳脑电图技术及其各种应用相关的研究。我们选择了 123 篇出版物并综合了信息以突出该领域的主要发现和趋势。主要结果。我们的综述强调了耳脑电图技术作为可穿戴脑电图技术未来的潜力。我们讨论了耳脑电图与传统头皮脑电图相比的优势和局限性以及克服这些局限性的方法。通过我们的综述,我们发现耳脑电图是一种很有前途的方法,其产生的结果与传统的基于头皮的方法相当。我们回顾了耳脑电图传感设备的发展,包括设计、传感器类型和材料。我们还回顾了耳脑电图在不同应用领域(如脑机接口和临床监测)的研究现状。意义。这篇评论文章是第一篇专注于回顾耳部脑电图研究文章的论文。因此,它为从事神经工程领域的研究人员、临床医生和工程师提供了宝贵的资源。我们的评论揭示了耳部脑电图令人兴奋的未来前景,以及它推动神经工程研究和成为可穿戴脑电图技术未来的潜力。
1.Guthrie, G.J.:眼科手术讲座,伦敦,Burgess & Hill,1823 年。2.1820 年至 1905 年纽约眼科(后来是耳科)医院的早期会议记录和报告。3.Dunshee, K.H.:《当你经过时》,纽约,黑斯廷斯出版社,1952 年,第 58、91、209 页。4.Hone,P.:《日记,1828-1851》,由 Allan Nevins 编辑,纽约,Dodd,Mead & Co.,1927 年,卷。1 和
1.Guthrie, G.J.:眼科手术讲座,伦敦,Burgess & Hill,1823 年。2.1820 年至 1905 年纽约眼科(后来是耳科)医院的早期会议记录和报告。3.Dunshee, K.H.:《当你经过时》,纽约,黑斯廷斯出版社,1952 年,第 58、91、209 页。4.Hone,P.:《日记,1828-1851》,由 Allan Nevins 编辑,纽约,Dodd,Mead & Co.,1927 年,卷。1 和