当获得资源有限时,生物必须将能源投资转移到生理过程之间,以生存,繁殖和应对不可预测的事件。这些有限的资源在过程之间的转移可能会导致生理折衷,通常是由糖皮质激素介导的。我们评估了免疫力,繁殖的生理过程和野生成年红耳乌龟(Trachemys Scripta Elegrans)中的压力反应之间的关系。红耳滑块表现出一种多闭合的生殖策略,需要在女性筑巢季节开始时对繁殖的高能投资。男性在春季伴侣,在夏末/秋季秋末进行精子发生和交配。我们期望在向生殖过程的服装涉及时要折衷。为了测试这一点,我们对123个个体进行了标准化的急性应激源,并收集了血液,以测量先天的免疫能力和循环类固醇激素浓度。女性繁殖与免疫能力之间的权衡发生在筑巢季节的初期。这项高生殖投资可以通过增强的孕激素和降低基线先天免疫来明显。皮质酮(Cort)也很高,表明在促进能量分配中起作用。折衷在男性中并不那么明显,尽管男性在秋天的精子发生和交配之前上调了先天的IM Mune功能,基线Cort和睾丸激素。在整个抽样期间,雄性和女性都会增加急性Stan折叠应激源后的Cort和免疫能力。综上所述,我们得出的结论是,生殖需要在女性生殖期最高的生殖期内进行能源分配的变化,但是即使在增加生殖投资期间,该人群中的所有个人也能够对标准化的压力源做出反应。这些发现加强了持续的证据,表明生理关系是上下文依赖性的,并且在整个生殖季节中的资源需求是动态的。
摘要:目标:本文旨在验证一种可穿戴、不显眼的耳中心脑电图 (EEG) 设备(称为“EARtrodes”)的性能和物理设计,该设备使用早期和晚期听觉诱发反应。结果还将为该设备用作隐藏式脑机接口 (BCI) 提供概念验证。设计:该设备由定制耳机和符合人体工程学的耳后部件组成,内嵌电极由柔软而灵活的硅橡胶和碳纤维组合制成。通过对人耳道和耳周区域的形态和几何分析,获得了导电硅胶电极在耳道内的位置和耳后部件的最佳几何形状。还开发了一种完全导电的通用耳机,以评估通用、更实惠的解决方案的潜力。结果:早期延迟结果表明导电硅胶电极能够记录高质量的 EEG 信号,与传统镀金电极获得的信号相当。此外,延迟结果还表明 EARtrodes 能够可靠地从耳朵检测决策过程。结论:EEG 结果验证了 EARtrodes 作为耳内和耳内 EEG 记录系统的性能,该系统适用于听力学、神经科学、临床研究等领域的广泛应用,并且可作为非侵入式 BCI。
珀耳帖电池支架提供出色的温度稳定性和快速的温度转换。BioMate 3S 的空气冷却珀耳帖附件以易于使用的配置提供卓越的性能。空气冷却珀耳帖附件专为生命科学检测而设计,提供 20 至 60 °C 的可靠温度控制,准确度和精度为 ±0.1 °C。它还包括磁力搅拌。精密电子设备允许在电池内部快速达到热平衡,而不会超过设定点温度,否则会损坏样品。传统的循环水系统依赖于将热量传递给大量液体,导致温度转换缓慢和长期温度稳定性差。空气冷却珀耳帖附件比大多数循环液体温度控制器便宜,并且性能更好,完全不需要维护。
图 2a:极耳冷却测试设置(左)和热成像结果(右)。除了热成像测试外,伦敦帝国理工学院还研究了极耳冷却性能,其研究得出结论,极耳冷却可延长软包电池的使用寿命。虽然这项研究还提出,与不进行任何电池修改的底部冷却相比,极耳冷却并不是最佳的冷却解决方案,但已经进行了模拟并证明,与表面冷却相比,改变极耳部分和集电器厚度可以实现类似或更好的冷却性能。塞拉尼斯公司先进移动卓越中心的工程师与法国 CEA 研究所的热管理模拟部门合作,进行了一项全面的数值研究,旨在实现极耳冷却电池和底部冷却电池的类似冷却行为。底部冷却是当今软包电池的参考,在最新的车辆中可以看到,这些车辆实现了市场上最快的充电速度,例如保时捷 Taycan 或现代 E-GMP 汽车。图 3a 中的图表表示底部冷却电池在 2C 恒定速率下充满电时的参考情况的温升。电池为袋装形式,长 350 毫米,厚 10 毫米,高 100 毫米。边界条件是充电开始时温度为 25°C,电池除极耳所在位置外所有表面均无对流,热管理系统确保温度恒定
第 7 章 兔耳袋狸分布和火灾:塔纳米沙漠栖息地适宜性替代模型的测试 介绍 引入的食草动物/基质模型 引入的捕食者模型…… 改变的火灾制度模型 气候/植被梯度模型…… 方法 研究区域、气候和植被 动物识别和监测技术 解释变量 变量选择和模型拟合…… 模型评估 结果 兔耳袋狸流行的空间和时间趋势 兔耳袋狸-环境关系 模型排名、预测和评估…… 讨论。 发生范围…… 占用区域 栖息地适宜性和避难所特征 全球模型的预测性能和局限性…… 对干旱澳大利亚概念模型的影响…… 管理和现状评估的影响…… 附录 7.1…… 附录 7.2……
摘要 随着反向遗传操作平台的建立,柔嫩艾美耳球虫已成为研究原虫生物学和免疫学的宝贵模式生物。本文介绍了利用CRISPR(成簇的规律间隔的短回文重复序列)/Cas9(内切酶)系统对柔嫩艾美耳球虫进行高效基因编辑的应用,表明CRISPR/Cas9系统可通过一条向导RNA介导位点特异性的双链DNA断裂。利用该系统,我们成功地将红色荧光蛋白插入内源性微线体蛋白2(EtMic2)的C端,对其进行了标记。我们的研究结果将CRISPR/Cas9介导的基因改造系统的应用扩展到柔嫩艾美耳球虫,为针对性地研究顶复门寄生虫的基因功能开辟了一条新途径。
为了进行这项测试,我们建造了一个反作用结构来支撑右侧机翼,ILEF 测试件就安装在机翼上。我们设计了一组模拟机身舱壁的凸耳,直接与内翼根凸耳连接。这些定制凸耳上装有应变计,目的是估算与反作用结构连接处的负载分布。在最终安装到反作用结构上之前,我们在负载框架中对它们进行了单独校准,并施加了垂直和水平负载。本文重点介绍了选择仪表位置和方向的技术、校准程序和数据分析。最后,我们讨论了从这个项目中学到的一些经验教训。
标题:使用耳脑电图 (cEEGrids) 记录大脑活动 作者及所属机构:Daniel Hölle、Martin G. Bleichner 日常生活神经生理学组,德国奥尔登堡大学心理学系 视频:https://uol.de/en/psychology/neurophysiology/resources/ceegrid-video-tutorial 摘要:cEEGrid(耳脑电图)可以长时间记录实验室内外的大脑活动。在此协议中,我们描述了如何设置和使用 cEEGrids 进行记录。 摘要:cEEGrid(耳脑电图;耳脑电图)是一种不显眼且舒适的电极阵列,固定在耳朵周围。它适合长时间研究实验室外的大脑活动。先前的研究表明,cEEGrid 可用于研究实验室内外的各种认知过程,甚至可以研究一整天。要记录高质量的耳部脑电图数据,必须进行精心准备。在此协议中,我们解释了成功使用 cEEGrids 进行实验所需的步骤:首先,我们展示了如何在记录之前测试 cEEGrid 的功能。其次,我们描述了如何准备参与者并安装 cEEGrid,这是记录高质量数据的最重要步骤。第三,我们概述了如何将 cEEGrids 连接到放大器以及如何检查信号质量。在此协议中,我们提供了最佳实践建议和技巧,使 cEEGrid 记录更容易。如果研究人员遵循此协议,他们就完全有能力在实验室内外使用 cEEGrid 进行实验。简介:使用移动耳脑电图 (EEG),可以在日常生活中记录大脑活动,并获得对实验室以外的神经处理的新见解 1 。为了适合日常生活,移动耳脑电图系统应该是透明的:不引人注目、易于使用、运动耐受性好,即使佩戴几个小时也舒适 2 。 cEEGrid 是一种 C 形耳脑电图系统,旨在满足这些要求,以最大限度地减少对自然行为的干扰。cEEGrid 由十个印在柔性印刷材料上的 Ag/AgCl 电极组成 3 。结合微型移动放大器和用于数据采集的智能手机 4、5,cEEGrid 可用于长时间收集耳脑电图 1 。有许多神经过程可以通过耳朵周围的电极记录 6、7 。实验室进行的几项研究表明 cEEGrid 在研究这些过程方面的潜力。它已成功用于听觉注意力解码,准确度高于偶然水平 8-12 。Segaert 及其同事 13 使用 cEEGrids 量化
珀耳帖电池支架具有出色的温度稳定性和快速的温度转换。BioMate 3S 的空气冷却式珀耳帖附件采用易于使用的配置,性能卓越。空气冷却式珀耳帖附件专为生命科学检测而设计,可提供 20 至 60 °C 的可靠温度控制,准确度和精度为 ±0.1 °C。它还包括磁力搅拌。精密的电子设备可使电池内部快速达到热平衡,而不会超过设定温度,否则可能会损坏样品。传统的循环水系统依赖于将热量传递给大量液体,导致温度转换缓慢和长期温度稳定性差。空气冷却式珀耳帖附件比大多数循环液体温度控制器便宜,性能更佳,而且完全不需要维护。
1美国德克萨斯州休斯顿休斯顿卫理公会医院2Charité大学,德国柏林3Charité大学3弗罗克劳夫大学,波兰弗罗克劳夫4密歇根大学医学院,美国密歇根州安阿伯市,美国密歇根州安阿伯市5临床开发,拜耳,柏林,德国,德国8 R&D,临床数据科学与分析,拜耳,雷丁,英国雷丁9心血管和肾脏,美国医学事务,美国医学事务,拜耳,美国有限责任公司,美国马萨诸塞州波士顿,美国马萨诸塞州(数据分析时有隶属关系)10 Steno糖尿病中心,Copenhagen,Copenhagen,Denmark deNmark