⚫ 工作电压:1.75V 至 5.5V ⚫ 平均工作电流:40uA(典型值)@1Con/s,Vcc = 3.3V ⚫ 关断电流:3.0uA(典型值) ⚫ 无需校准的温度精度:± 1 o C 从 20 o C 到 100 o C ⚫ 12 位 ADC,分辨率为 0.0625 o C ⚫ 数字接口兼容 SMBus 和 I 2 C ⚫ 通过设置配置 1 寄存器(RANGE 位)可将温度范围提高到 -64 o C 至 191 o C ⚫ 可编程过/欠警报和带滞后温度的热温度 ⚫ 串行电阻取消 ⚫ 热二极管故障检测 ⚫ 支持 SMBus 警报响应地址(ARA) ⚫ 温度范围: -40 o C 至 125 o C ⚫可用封装: MSOP-10 应用
旋转的黑洞储存了可以提取的旋转能量。当黑洞浸入外部提供的磁场时,能层内磁场线的重新连接会产生负能量(相对于无穷大)粒子,这些粒子会落入黑洞事件视界,而其他加速粒子则会逃脱并从黑洞中窃取能量。我们通过分析表明,当黑洞自旋较高(无量纲自旋 a ∼ 1)且等离子体被强磁化(等离子体磁化 σ 0 > 1 / 3)时,可以通过磁重联提取能量。允许提取能量的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于 σ 0 ≫ 1,被最大旋转黑洞吞噬的减速等离子体的焓在无穷大处的渐近负能量为 ϵ ∞ − ≃− p
英国 TINA 报告确定了需要创新战略的关键技术 • 需要在 2020 年至 2030 年之间做出重大基础设施投资决策,以实现 2050 年的气候目标 • 应立即开始开发氢基础设施
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.
芳香化酶抑制剂 (AI) 是广泛用于治疗雌激素受体 (ER) 阳性乳腺癌患者的药物。耐药性是芳香化酶抑制疗法的主要障碍。获得性 AI 耐药性的背后有多种原因。本研究旨在确定接受非甾体 AI(阿那曲唑和来曲唑)的患者获得性 AI 耐药性的可能原因。我们使用了来自 Cancer Genomic Atlas 数据库的乳腺浸润性癌的基因组、转录组、表观遗传和突变数据。然后根据患者对非甾体 AI 的反应将数据分为敏感组和耐药组。研究包括 150 名患者的敏感组和 172 名患者的耐药组。对这些数据进行汇总分析,以探究可能导致 AI 耐药性的因素。我们在两组中确定了 17 个差异调控基因 (DEG)。然后,对这些 DEG 进行甲基化、突变、miRNA、拷贝数变异和通路分析。预测了最常突变的基因(FGFR3、CDKN2A、RNF208、MAPK4、MAPK15、HSD3B1、CRYBB2、CDC20B、TP53TG5 和 MAPK8IP3)。我们还确定了一个关键 miRNA - hsa-mir-1264,它调节 CDC20B 的表达。通路分析显示 HSD3B1 参与雌激素生物合成。这项研究揭示了可能与 ER 阳性乳腺癌 AI 耐药性的发展有关的关键基因的参与,因此可能作为这些患者的潜在预后和诊断生物标志物。
Cyano群体以其丰富而多样的重新反应而闻名,因此使其成为访问各种官能团的多功能前体,例如羧酸,醛,胺,胺,胺,胺,胺,四唑,阿沙唑和异唑和异质组。和药品。2加上,氰基覆盖的有机化合物在有机电子和相关技术(例如有机太阳能电池(OSC),或者发光二极管二极管(OLEDS)(OLEDS),非线性光学(NLO)(NLO),光转换剂,光转化剂,有机化的cotals和Phototectes cotal和Photots Phototects和Phototsphtphotox cotal中,有机电子和相关技术的多样化起作用起作用。3因此,通过采用一系列氰化试剂来实现cyanation的重要过程。考虑到环境的影响和毒性,从使用常规的cn型试剂(例如KCN,NACN,Zn(CN)₂和K₄[Fe(CN)₆]到相对更安全的金属硫代盐,从使用常规cn染色试剂进行了明显的过渡。4a,这些试剂中的一些产生化学计量的金属废物和/或释放有害的HCN。为了克服这些多年生问题,已经探索了各种非金属有机氰化试剂,用于氰化含有丙酮氰基氢蛋白,三甲基甲硅烷基氰化物(TMSCN),丙烷基丙烯酸酯,丙烷二酸,乙酸乙酯乙酸乙酯,和异西亚酯。4B此外,硝基苯二烯酸和苯甲氰酸酯也被用作金属催化中的有机溶剂。更重要的是,与广泛研究的C – CN键形成相比,构建X – CN键(X = N,S,O)的探索程度较小。8在过去十年中,许多氰化策略
ucd-pymt,产生显性阴性蛋白,该蛋白特异性抑制了由Charles Vinson(NCI,Bethesda,MD,MD,USA)提供的C/EBP成员的DNA结合。根据制造商的说明,使用JetPEI(Polytransfection; Qbiogene,Irvine,CA,美国)进行瞬态转染。允许转染进行16小时,并用1 nm TCDD或0.1%DMSO(对照)处理细胞24小时,然后再诱导凋亡或用TCDD处理TCDD进行RNA表达分析。用于DRE荧光素酶报告基因测定UCD-PYMT细胞用DRE报告基因质粒瞬时转染。 16小时后,用1 nm TCDD或0.1%DMSO(对照)处理4小时。将细胞裂解,并使用Luminometer(Berthold Lumat LB9501/16;宾夕法尼亚州匹兹堡)使用荧光素酶报告基因测定系统(Promega Corp.,Madison,WI)测量荧光素酶活性。 使用Bradford染料测定法(Bio-Rad Laboratories,Inc。,Hercules,CA)将相对光单元标准化为蛋白质浓度。用于DRE荧光素酶报告基因测定UCD-PYMT细胞用DRE报告基因质粒瞬时转染。16小时后,用1 nm TCDD或0.1%DMSO(对照)处理4小时。将细胞裂解,并使用Luminometer(Berthold Lumat LB9501/16;宾夕法尼亚州匹兹堡)使用荧光素酶报告基因测定系统(Promega Corp.,Madison,WI)测量荧光素酶活性。使用Bradford染料测定法(Bio-Rad Laboratories,Inc。,Hercules,CA)将相对光单元标准化为蛋白质浓度。
安联拥有雄心壮志,以及全球规模和技能,致力于成为利益相关者值得信赖的合作伙伴,帮助解决社会最紧迫的问题。如今,我们已经将环境、社会和治理方面作为业务的核心。展望未来,我们正努力将可持续性完全融入我们组织和业务的运营方式中,并在社会、经济和环境方面产生实际影响。为了支持可持续性整合,全球可持续性于 2021 年 1 月成立为集团中心,可持续性委员会于 2021 年 6 月在我们的监事会下成立。2022 年,我们将进一步将可持续性融入安联的组织和业务领域,并继续激励员工、客户、投资者和社会。
全球债券市场经历了大幅波动,但随着全球央行开始进入利率宽松周期,截至 2024 年 9 月 30 日的 12 个月结束时收益率下降。全球债券在本季度开始时表现疲软,因为投资者接受了利率维持在高位的时间比之前预期的要长。这导致全球债券收益率在 10 月份创下多年新高,其中 10 年期美国国债收益率自 2007 年以来首次升至 5% 以上。随后,全球债券市场表现喜忧参半,然后在 2024 年第三季度反弹,因为通胀和经济活动指标均有所减弱,全球央行普遍转向放松政策利率。在第三季度,美联储 (Fed) 首次采取政策宽松行动,将政策利率下调 50 个基点,并前瞻性地指引进一步降息,而欧洲央行和英国央行也降低了借贷成本。日本央行则表现分化,将利率上调至 0.25%,表明对通胀率持续保持在 2% 以上的信心。截至第三季度末,美国 10 年期国债收益率跌至 3.78%。欧洲和英国收益率也出现下滑,反映出经济增长放缓和鸽派前景。