硫化聚丙烯腈 (SPAN) 因其高容量、延长的循环寿命并且不含昂贵的过渡金属,最近成为高能锂 (Li) 金属电池的有前途的正极。由于锂金属和 SPAN 的高容量导致电极重量相对较小,因此 Li/SPAN 电池的重量和比能量密度对电解质重量特别敏感,凸显了最小化电解质密度的重要性。此外,锂金属阳极和 SPAN 阴极的大体积变化需要富含无机的界面相,以保证在长循环期间的完整性和保护性。这项工作通过电解质设计解决了这些关键方面,其中轻质二丁基醚 (DBE) 用作浓缩锂双(氟磺酰基)酰亚胺 (LiFSI)-三乙基磷酸 (TEP) 溶液的稀释剂。设计的电解质(d = 1.04 g mL − 1)比传统的局部高浓度电解质(LHCE)轻 40%–50%,从而在电池层面上带来 12%–20% 的额外能量密度。此外,DBE 的使用引入了显著的溶剂-稀释剂亲和力,从而产生了独特的溶剂化结构,增强了形成有利的阴离子衍生的富含无机物的界面相的能力,最大限度地减少了电解质消耗,并提高了电池的循环性能。该电解质还表现出低挥发性,并在热滥用下为锂金属负极和 SPAN 正极提供良好的保护。
lspr是它们独特的光学特性之一,可以考虑扩大周围分析物分子的拉曼信号。通过仔细控制其大小,形状和间距间距,可以使Aunps展示LSPR,从而使其成为提高SERS信号的理想候选者。au已被许多研究人员广泛用于SERS主动底物。24 - 31然而,由于乏味的途径和使用刺激性化学物质,合成Aunps的合成一直在具有挑战性。32 - 38在这里,通过使用Dime-thyylformamide(DMF)的简单明了的方法,使用金氯化水合物(Haucl 4 $ 3H 2 O)合成金纳米颗粒(AUNP)。39 - 41使用DMF作为溶剂和还原剂,以前已经表明,金,银和其他金属的金属纳米结构可以以各种方式形成。42 - 44这里,引入了一个简单的途径,以直接在PAN/DMF解决方案中合成AUNP。这种方法具有无表面活性剂合成的好处。同时,聚合物纳米复合材料不仅增强了整体表面特性,还可以支持可重复使用的lm。45