受贻贝黏附蛋白的启发,聚多巴胺 (pDA) 已成为最广泛使用的材料表面功能化方法之一,部分原因是将 pDA 薄膜浸入多巴胺的碱性水溶液中后,大多数材料上都会沉积一层多功能、简单和自发性薄膜。然而,过去十年来,pDA 在表面改性方面的快速应用与人们对 pDA 成分的了解速度缓慢形成了鲜明对比。人们为阐明这种迷人材料的形成机制和结构进行了无数次尝试,但几乎没有达成共识,这主要是因为 pDA 具有不溶性;这使得大多数传统的聚合物分子量表征方法都无效。[1] 在这里,我们采用了非传统的单分子力谱 (SMFS) 方法来表征 pDA 薄膜。将涂有 pDA 的悬臂从氧化物表面拉回时,会显示出聚合物的特征,轮廓长度可达 200nm。 pDA 聚合物在其大部分轮廓长度上通常与表面结合较弱,偶尔会出现“粘性”点。我们的研究结果为 pDA 的聚合物性质提供了第一个直接证据,并为理解和调整其物理化学性质奠定了基础。
深度过滤方法用于水处理和空气净化以及许多其他行业,例如食品加工和药品。这是一种高效的方法,因为它的适应性和捕获从Ultrafine(<0.1 µm)到细细的粒径的能力(≥0.1-<2.5 µm)和粗糙(≥2.5 - 10 µm)。深度过滤的主要特征是它使用多孔层的使用,这些多孔层将颗粒捕获整个滤清器材料,而不仅仅是在表面上。此设计允许深度过滤器在堵塞之前捕获更大体积的颗粒。非织造对于深度过滤是有利的,因为颗粒不仅在表面上,而且在基质本身内捕获。纤维的随机排列通过它们无法逃脱的曲折路径迫使颗粒。
摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体
自身聚合丙烯酸树脂主要由聚(甲基丙烯酸甲酯)和甲基丙烯酸甲酯组成,由于其易于使用,成本效益和可接受的美观,在室温下以室温形成固体聚合网络,因此在假体牙科中至关重要。这些树脂最重要的机械性能之一是弯曲强度,这对于它们在连续的咀嚼力下的性能至关重要。在临床应用中,假肢材料会忍受咀嚼的重复应力,而具有较高弯曲强度的树脂可以更好地抵抗变形和断裂。该特性对于确保假体的长期完整性,最大程度地减少物质失败的风险并提高假肢寿命至关重要,从而有助于更好的临床结果和患者满意度。
科隆布,2022 年 11 月 21 日 阿科玛推出全新质量平衡*丙烯酸材料系列,增强其生物基产品组合 阿科玛宣布其创新可持续产品组合迈出重要一步,通过质量平衡法认证了一系列生物属性丙烯酸单体。这些单体使阿科玛能够开始为广泛的应用提供经过认证的生物属性特种丙烯酸添加剂和树脂。这使集团成为生物属性丙烯酸材料领域的全球领导者,并成为市场上客户的关键合作伙伴。 阿科玛推出全新系列**生物属性丙烯酸单体和特种丙烯酸添加剂和树脂,经国际可持续性和碳认证-PLUS (ISCC+) 框架进行质量平衡认证,是向更可再生和更低碳经济转型的重要里程碑。用生物/生物循环原料替代化石原料将支持阿科玛的客户通过减少其范围 3 温室气体排放来实现其气候计划目标。
摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。
水下建筑的主要材料是另一种金属和丙烯酸。丙烯酸材料专门用于提高可见度,而金属用于加固(增强)。使用高强度金属是因为它特别便宜,并且具有极高的发电量。它也不是很好的电和热导体。它具有很高的耐腐蚀性。丙烯酸材料比玻璃更受欢迎;由于密度较小,它比玻璃更好,而且它的冲击电也比玻璃高。丙烯酸比玻璃具有周围材料的自然长度和颜色。它也是强度的适当绝缘体,有利于确保用户和水下生物的健康和安全。 1.1 目标
丙烯腈丁二烯苯乙烯。丙烯腈/丁二烯/丙烯酸酯。丙烯腈/氯化聚乙烯/苯乙烯。丙烯腈/乙二烯 - 丙烯 - 二烯/苯乙烯。丙烯腈/甲基丙烯酸甲酯。丙烯腈/苯乙烯/丙烯酸酯。醋酸纤维素。乙酸纤维素丁酸酯。丙酸纤维素丙酸酯。脆性甲醛。羧甲基纤维素。硝酸纤维素。丙酸纤维素。三乙酸纤维素。乙基纤维素。乙烯丙烯酸乙烯酸乙烯酸酯。 乙烯/甲基丙烯酸。 环氧或环氧树脂。 乙烯/丙烯。 乙烯/丙烯/二烯。 乙烯/四氟乙烯。 乙烯乙酸乙酯。 乙烯/乙烯基醇。 perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。 呋喃甲醛。 甲基丙烯酸酯/丁二烯/苯乙烯。 甲基纤维素。 三聚氰胺 - 甲醛。 三聚氰胺 - 苯酚 - 甲醛。 聚酰胺。 聚酰胺酰亚胺聚丙烯硝基烯。 聚酯氨基烷烷。 聚丁烯-L。聚丁烯三乙酸酯。 聚碳酸酯。 多氯二甲基。 邻苯二甲酸酯。 聚乙烯。 聚醚块酰胺。 聚醚酮。 聚醚酰亚胺。 聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。乙烯丙烯酸乙烯酸乙烯酸酯。乙烯/甲基丙烯酸。环氧或环氧树脂。乙烯/丙烯。乙烯/丙烯/二烯。乙烯/四氟乙烯。乙烯乙酸乙酯。乙烯/乙烯基醇。perfluoro(乙烯/丙烯):四氟乙烯烯丙基二氟丙烯。呋喃甲醛。甲基丙烯酸酯/丁二烯/苯乙烯。甲基纤维素。三聚氰胺 - 甲醛。三聚氰胺 - 苯酚 - 甲醛。聚酰胺。聚酰胺酰亚胺聚丙烯硝基烯。聚酯氨基烷烷。聚丁烯-L。聚丁烯三乙酸酯。聚碳酸酯。多氯二甲基。邻苯二甲酸酯。聚乙烯。聚醚块酰胺。聚醚酮。聚醚酰亚胺。聚乙烯氧化物。 聚醚硫。 聚对苯二甲酸酯。 聚醚硫。 聚醚聚氨酯。 苯酚甲醛。聚乙烯氧化物。聚醚硫。聚对苯二甲酸酯。聚醚硫。聚醚聚氨酯。苯酚甲醛。全氟烷氧基烷烃。聚酰亚胺。 甲基丙烯酸甲酯。聚酰亚胺。甲基丙烯酸甲酯。
玻璃离子牙科水泥 (GIC) 是一种具有抗龋活性的美观直接修复材料。玻璃离子由铝硅酸盐玻璃粉和聚丙烯酸液体组成。在修复材料中,GIC 的显著特点是它们能够无需任何预处理即可与湿润的牙齿结构粘合,并提供长时间的氟化物释放,从而防止随后的蛀牙 (龋齿)。这些特性,加上材料可接受的美观性和生物相容性,使它们在医疗和牙科应用中广受欢迎和理想。然而,GIC 表现出较差的机械性能和湿度敏感性。为了提高其机械和物理性能,GIC 粉末经过了大量的配制和改性。本文概述了用于增强 GIC 机械和物理性能的各种填料。关键词:牙科玻璃离子水泥、复合体、树脂改性 GIC、Giomer、纳米粒子
方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H