a 岛根大学工业创新组织下一代 TATARA 联合创造中心,日本松江 b 田纳西大学诺克斯维尔分校,美国田纳西州诺克斯维尔 c 阿利坎特大学科学学院,第二阶段,应用物理系,西班牙阿利坎特 d 英国原子能管理局,卡勒姆聚变能源中心,卡勒姆科学中心,阿宾登,奥克森,OX14 3DB,英国 e 密歇根大学核工程与放射科学系,密歇根州安娜堡,48109,美国 f 巴黎萨克雷大学,CEA,金属冶金物理研究中心,91191,伊维特河畔吉夫,法国 g 太平洋西北国家实验室,华盛顿州里奇兰,美国 h 橡树岭国家实验室材料科学与技术部,田纳西州橡树岭 37831,美国 i Forschungszentrum J¨ulich GmbH,能源和气候研究所,52425 J¨ulich,德国 j 国立核能研究大学莫斯科工程物理学院,Kashirskoe sh.31,115409,莫斯科,俄罗斯联邦 k 加利福尼亚大学材料科学与工程系,美国加利福尼亚州洛杉矶 l 克莱姆森大学机械工程系,美国南卡罗来纳州克莱姆森 29623 m 克莱姆森大学材料科学与工程系,美国南卡罗来纳州克莱姆森 29623 n 密歇根大学材料科学与工程系,美国密歇根州安娜堡 48104 o 瑞典皇家理工学院核工程系,SE106 91 斯德哥尔摩,瑞典 p 麻省理工学院,美国马萨诸塞州剑桥 q 日本原子能机构,日本茨城县中郡东海村 r 材料科学与化学工程系,石溪大学,石溪,纽约,美国
我们已经建立了先进聚变中子源 (A-FNS) 的概念设计。为了获得聚变 DEMO DT 反应堆合格材料所需的辐照数据,我们新设计了九个测试模块 (TM) 以在 A-FNS 中实施。测试模块的设计基于一种新的独特维护方案:“与屏蔽塞集成的水平维护方法”。测试模块中 F82H 样品的目标 dpa 在运行可用率为 50% 的运行期间约为 10dpa/fpy。我们确定了测试单元中 TM 的配置,以实现每个测试模块所需的辐照数据。我们对锂靶系统的氚迁移进行了初步估计。发现需要 10 5 m 3 /h 的连续通风和几个容积为 30 m 3 的排水箱来排放每周的废水。 A-FNS 的设计目的是使产生的大量中子不仅可用于聚变材料辐照,还可用于各种非聚变用途。我们新设计了一个模块,用于生产大量用于医疗用途的 99 Mo。这种非聚变用途的模块可以安装在测试单元中,并兼容聚变材料辐照测试。
第二项战略行动是建立创新研究引擎生态系统,以在基础科学活动(例如技术就绪水平 [TRL]~ 1-2)与更成熟的开发(TRL ~ 3-4)之间架起桥梁,并在科学与由不断发展的聚变行业定义和启发的早期技术开发之间架起桥梁(例如里程碑计划获奖者的技术路线图)。图 2 说明了 FIRE 协作活动如何融入 SC FES 计划。 “引擎”生态系统将 SC FES 基础计划内的孵化活动与支持向工业转化的聚变技术加速联系起来。后者得到了公私合作伙伴关系的支持,并辅以其他公私合作伙伴关系元素,例如聚变能源联盟(参见战略#3),它通过降低聚变材料和技术 (FM&T) 差距的风险来帮助加速聚变能源的发展。
吴玉成现为合肥工业大学特聘教授、博士生导师。2000年获中国科学院凝聚态物理博士学位。目前的研究兴趣主要集中在聚变材料、能源相关材料和功能纳米材料上。他曾在世界各地担任各种学术职务,包括圣安德鲁斯大学名誉教授(2013-)、皇家墨尔本理工大学客座教授(2012-)、中国微米纳米技术学会理事(2012-)、国家先进能源环境材料国际科技合作基地主任(2017-)。他在Science Advances、Advanced Materials、Advanced Functional Materials、ACS Nano等期刊上发表了300多篇同行评议科学论文,总引用次数超过12 000次。
在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。
在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。
聚变能源科学咨询委员会 (FESAC) 长期计划 (LRP) 2020 年报告“驱动未来:聚变与等离子体”在其执行摘要中指出,“现在是积极部署聚变能源的时候了,它可以为现代社会提供大量动力,同时缓解气候变化。”此外,同一报告还指出,“完成[聚变]能源使命需要将研究的平衡转向FM&T(聚变材料和技术),它将三大科学驱动因素联系在一起:维持燃烧等离子体、为极端条件设计和利用聚变能。”此外,美国国家科学、工程和医学院 (NASEM) 2021 年共识研究报告“将聚变引入美国电网”中的一项重要建议是:“为了使美国在 2050 年前成为聚变领域的领导者并在向低碳排放电力系统的过渡中发挥影响,能源部和私营部门应在 2035-2040 年期间在美国的一个聚变试验工厂中生产净电力。”这些报告中的建议反映了过去几十年来聚变科学和技术的巨大进步以及私营部门在聚变领域的快速增长和大量投资,有助于政府认识到聚变能源在推进实现 2050 年净零排放目标方面的潜力。
聚变能科学概述聚变能科学 (FES) 计划的使命是扩展对极高温度和密度物质的根本理解,并构建开发聚变能源所需的科学基础。此外,FES 的使命还包括推进所需的基础研究,以解决发展聚变能作为美国清洁能源所需的基础科学和技术差距。这一方法包括通过将研究平衡转向长期计划 (LRP) 聚变材料和技术 (FM&T) 差距来实现聚变能使命,这将三大科学驱动因素联系起来:维持燃烧等离子体、为极端条件设计和利用聚变能。SC 支持美国参与 ITER,以便美国科学家能够使用符合 LRP 目标的燃烧等离子体实验设施。 DIII-D 国家聚变设施和国家球形环实验升级 (NSTX-U) 设施是世界领先的科学办公室 (SC) 用户设施,用于实验研究,供国家实验室、大学和行业研究团体的科学家使用,以优化磁约束机制。惯性聚变能 (IFE) 合作中心为这项工作提供了补充,以支持惯性约束方法的战略发展。聚变创新研究引擎 (FIRE) 中心通过与多个公共和私人合作伙伴的小组研究合作,解决关键的科学和技术差距,并将发现科学、创新和转化研究结合在一起。与聚变私营部门的合作可以通过聚变能源创新网络 (INFUSE) 代金券计划和 FES 建立的聚变发展里程碑计划共同努力解决常见的科学和技术挑战,从而加速聚变能源的可行性,以支持政府的大胆十年愿景 (BDV),为商业化聚变能源奠定基础。 FES 支持聚变理论和模拟方面的重大努力,以预测和解释等离子体作为自组织系统的复杂行为,从而补充这些实验活动。FES 还与高级科学计算研究 (ASCR) 计划合作,支持通过高级计算进行科学发现 (SciDAC) 组合。美国科学家利用国际合作伙伴关系对具有独特能力的海外托卡马克和仿星器进行研究。开发能够承受巨大热量和中子暴露并培育使聚变成为自给自足能源的燃料的新型材料和技术对于聚变试验工厂 (FPP) 的设计基础非常重要。材料等离子体暴露实验 (MPEX) 设施将解决等离子体-材料相互作用方面的知识空白。