磁性纳米粒子主要用于医学进步、化学疗法和专门的组织修复以进行靶向药物输送。在本研究中,首先制备并鉴定了磁性铁纳米粒子。然后,合成了可生物降解的聚丙烯己内酯-聚乙二醇 PCL-PEG1000-PCL 共聚物。采用含磁性纳米粒子的共聚物通过溶剂蒸发法制备阿霉素纳米粒子。使用 VSM、FT-IR、UV-vis、1 H-NMR 和 SEM 来确定共聚物纳米粒子的结构特性。通过上述表征方法确认了 PCL-PEG1000-PCL 三重嵌段共聚物的合成以及阿霉素和铁纳米粒子的包封。所得纳米粒子具有超顺磁性,药物包封率约为 95%。研究了 pH 和热量对药物释放曲线的影响。结果表明,合成的共聚物适用于阿霉素和铁纳米粒子的包封,可作为新型纳米结构载体有效递送抗癌药物。结果表明,由于磁性纳米粒子和共聚物的特性,它们可用于靶向药物递送。
聚类分析起源于分类学,是人类掌握的一门古老技能。过去,人们依据经验和专业知识对商品进行分类。随着现代社会的发展,人们对分类的要求越来越高[1,2],仅依据经验和专业知识的分类已逐渐被淘汰,现在计算机技术被用于聚类分析,使用算法解决庞大而复杂的聚类任务[3,4]。因此,聚类算法已被提出并应用于各种场合[5,6]。此外,我们生活的海量数据世界也使得聚类过程不可或缺。许多研究领域都面临着海量数据的问题[7,8]。如果没有聚类或数据降维等预处理,很难进行后续分析[9–11]。例如在机器学习领域,几乎所有重要算法的原始入口都是大量的大规模数据,如果不进行聚类或降维,这些数据很难得到利用[12–14]。在量子通信领域,量子通信设备仅供应给少数几家大公司,量子通信中的很多方可能都是经典的,聚类算法可以帮助通信方更便捷地处理传输的信息[15–17]。在数据降维方面,我们熟悉的主成分分析算法(PCA)[18]、多维缩放(MDS)、线性判别(LDA)、局部线性嵌入(LLE)等[19–22]。但降维算法不可避免地会降低数据的属性值,如果操作不当,数据就会失去准确性,结果就会出现偏差,而使用聚类算法可以避免此类问题。目前,聚类算法可以按以下方式划分。基于分区的聚类算法包括 K 均值 [23]、K 中值 [24] 和核 K 均值算法 [25]。基于层次的聚类算法包括 BIRCH、CURE 和 CHAMELEON 算法 [26]。基于密度的聚类算法包括 DBSCAN、均值漂移 (MS) [27] 和密度峰值聚类算法 (DPC) [28]。每种算法都具有不同的分类能力。
受贻贝黏附蛋白的启发,聚多巴胺 (pDA) 已成为最广泛使用的材料表面功能化方法之一,部分原因是将 pDA 薄膜浸入多巴胺的碱性水溶液中后,大多数材料上都会沉积一层多功能、简单和自发性薄膜。然而,过去十年来,pDA 在表面改性方面的快速应用与人们对 pDA 成分的了解速度缓慢形成了鲜明对比。人们为阐明这种迷人材料的形成机制和结构进行了无数次尝试,但几乎没有达成共识,这主要是因为 pDA 具有不溶性;这使得大多数传统的聚合物分子量表征方法都无效。[1] 在这里,我们采用了非传统的单分子力谱 (SMFS) 方法来表征 pDA 薄膜。将涂有 pDA 的悬臂从氧化物表面拉回时,会显示出聚合物的特征,轮廓长度可达 200nm。 pDA 聚合物在其大部分轮廓长度上通常与表面结合较弱,偶尔会出现“粘性”点。我们的研究结果为 pDA 的聚合物性质提供了第一个直接证据,并为理解和调整其物理化学性质奠定了基础。
深度过滤方法用于水处理和空气净化以及许多其他行业,例如食品加工和药品。这是一种高效的方法,因为它的适应性和捕获从Ultrafine(<0.1 µm)到细细的粒径的能力(≥0.1-<2.5 µm)和粗糙(≥2.5 - 10 µm)。深度过滤的主要特征是它使用多孔层的使用,这些多孔层将颗粒捕获整个滤清器材料,而不仅仅是在表面上。此设计允许深度过滤器在堵塞之前捕获更大体积的颗粒。非织造对于深度过滤是有利的,因为颗粒不仅在表面上,而且在基质本身内捕获。纤维的随机排列通过它们无法逃脱的曲折路径迫使颗粒。
海洋微塑料颗粒的人为污染日益令人担忧,因为它们既是有毒化合物的来源,又可以传播病原体和其他污染物。以前在陆地和沿海地区观察到了空气中的微塑料颗粒,但在遥远的海洋中却没有。在这里,我们在 2016 年 5 月至 6 月的塔拉太平洋探险期间收集了北大西洋(包括遥远的海洋大气)的环境气溶胶样本,并使用微拉曼光谱对其进行了化学表征。我们检测到了一系列空气中的微塑料,包括聚苯乙烯、聚乙烯、聚丙烯和聚硅氧烷化合物。在海水中也发现了聚乙烯和聚丙烯,表明当地产生了空气中的微塑料颗粒。终端速度估计和后向轨迹分析支持这一结论。由于技术原因,我们仅分析了大于 5 µ m 的颗粒,这些颗粒位于典型海洋大气尺寸分布的上端,这表明我们的分析低估了遥远海洋大气中空气中微塑料颗粒的存在。
两亲性聚合物纳米粒子作为优良的纳米载体,在药物递送系统(DDS)的研究中受到了极大的关注,特别是对于化疗药物、基因和蛋白质。例如,构成核-壳结构的两亲性聚合物已经应用于疏水性药物的溶解。POSS(多面体低聚倍半硅氧烷)是一种球形无机材料,尺寸为1 – 3纳米,具有高表面能和内部孔隙。作为纳米药物递送系统,POSS具有生物相容性、高载药量以及物理和生化稳定性,但对它的研究有限。1 – 9 最近,可以将抗癌药物递送到靶标并使其与肿瘤组织或细胞内体发生反应的pH敏感的靶向药物递送系统正在积极开发中。据报道,肿瘤部位的pH值比血液以及其内体和溶酶体的细胞内pH值酸性更强(约pH 5.0 – 6.0)。10 – 19
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
通过开环聚合化(ROP)合成的聚合物合成可以追溯到1900年代初,当时Leuchs(1906)描述了N-羧基氢化物的合成,ROP可以通过ROP聚合来制备多肽[1]。后来(1918),将ROP用于从饮食糖开始的多糖合成中[2]。1932年,Carothers等。[3]描述了乳酸(LD)的第一个ROP,以获得现在市场上最突出的聚酯生物塑料之一,Poly(PLA)(PLA)。在1954年,这种方法已获得Du Pont [4]的专利,直到1970年代后期,由于当时的生产特别昂贵,主要用于生物医学应用的背景[5]。In addition to the synthesis of PLA and other polyesters such as poly( ε -caprolactone) (PCL) and poly(glycolic acid) (PGA), contemporary ROP is used to supply industry with a number of other essential polymer materials, including polyethers (such as poly(oxy methylene), poly(ethylene glycol), or poly(tetrahydrofuran)),多硅氧烷,聚磷烯,聚(环辛),聚(氯化烯),由氮杂氨酸或恶唑氨酸单体制成的聚(乙烯亚胺)以及几种果糖酰胺,例如尼龙6 [6,7]。ROP是一种链生长的聚合反应,其中通过与该聚合物的活性末端组的反应通过反应单体打开单体,将环状单体添加到生长的聚合物链中(图7.1A)。使用的循环单体的类型以及所使用的催化剂/引发剂系统将确定生长链的活性端组的性质。各种环状分子可以通过一种或多种ROP机制做出反应。随后终端组的性质确定了发生聚合反应的机制类型。最重要的ROP机制包括自由基,离子(阳离子或阴离子),协调 - 插入,元疗法和酶促[8]。ROP可以适应的一些通用结构包括环烷烃和烷烃以及环中包含杂原子的分子,例如氧气
摘要:折纸结构具有轻便、坚硬和可扩展的优点。一些可扩展结构已经在市场上广泛使用,但尽管许多人试图开发一种可在轴向折叠而不会弯曲的聚对苯二甲酸乙二醇酯 (PET) 瓶,但这种瓶子尚未上市。因此,本研究旨在开发一种易于折叠而不会弯曲的 PET 瓶。初始模型由七层组成,其中五层(即不包括盖子和底部)设置为螺旋圆柱体。该模型可以相当容易地折叠而不会弯曲。然而,模型在压缩后会回弹到几乎原来的高度。因此,我们开发了具有两层或三层螺旋层的新型 PET 瓶来解决这个回弹问题。我们的新设计可以将可折叠层插入不可折叠层(例如锥形壳或圆柱壳)中,以抑制压缩后的回弹。此外,我们新设计中可折叠层和不可折叠层之间的凹槽可以进一步有助于捕获可折叠部件。而且,我们的新设计可以实现部分压缩,以在液体部分消耗时降低瓶子的高度。
基于聚乙烯醇(PVA)的生物塑料是在日常生活中取代常规塑料的一种有前途的替代方法。PVA是具有许多优点的可生物降解聚合物,例如无毒,低成本且易于加工。8,9在印度尼西亚,生物复合塑料公司自2009年以来一直在运营。他们将生物聚合物作为生物塑料矩阵发展。中间,pt。Inter Aneka Lestari Kimia或更名为Enviplast正在开发生物聚合物,甚至将它们出口到全球的各个国家。但是,基于PVA的生物复合材料往往具有较差的机械性能。在某些温度和条件下的10,11 PVA lms可以溶于水中,因此将PVA用作复合材料非常有限,需要修改。12 PVA的性质取决于分子量和产生PVA时使用的乙酸乙烯酯的长度所用的水解程度。PVA的分子量通常为20 000 - 400 000 g mol -1。13使用天然bre在PVA矩阵中添加llers或加固可以解决PVA应用的限制。天然bres是环保材料,可以根据植物,动物和矿物质得出,具体取决于提取的来源。14天然已被用作生物复合材料的加固,适用于许多工业应用。需要15,16特殊处理才能将纤维素与植物细胞壁分离以从植物中获得天然bre。17 - 19