背景和目标:印度尼西亚南苏拉威西的Jeneponto Regency的沿海地区受到微塑性污染的严重影响,这对海洋生物(如贝类和鱼类)构成了威胁。这项研究的目的是鉴定存在微塑料聚合物的存在,包括乙烯基氯化物,聚乙二醇,聚氯二氯甲基乙二醇,聚丁乙烯二甲酸酯,聚(异生丁基),异生酯基乙酸甲酸酯,乙酸纤维素硫酸酯和聚硫酸酯,以及鱼类属硫乙烯,和柔化壳壳酸酯,粘依乙烯基酸酯,粘硫乙烯基乙烯基乙烯基酸酯,和乙烯基硅酸盐酸胺壳酸酯,乙烯酸酯乙烯基酸酯,乙烯酸乙烯基酸酯,乙烯基酸磷脂酸酯,乙烯酸酯和硫乙烯基。印度尼西亚的詹蓬托区。方法:直接从Jeneponto Regency沿海水域的12个地点收集了60种贝类和鱼类样品。进行样品制备,包括酶消化和机械破坏,以将鱼类和贝类的有机组织分离为小颗粒。光学显微镜(以100倍和400倍的放大倍数为单位)用于观察形态,并使用改良的Neubeuer改进的计数室来观察每个样品体积的颗粒数。傅立叶转换红外光谱法用于确定聚合物的类型。发现:羽毛蛤clum含有最高数量的微塑料,总计58个项目范围从0.027到4.587毫米。羽毛蛤中微塑料的总丰度范围为0.25至2.14克。kurisi鱼包含22个物品,尺寸为0.085至2.127毫米,总丰度在0.01至0.08件范围内。乙烯基氯化物是微塑料聚合物的主要类型,占所有微塑料聚合物的42%。在鱼类和蛤中鉴定的聚合物的类型包括乙烯基氯,聚乙二醇,聚氯二氯乙二醇,聚丁烯二苯二甲酸酯,聚(异丁基甲基丙烯酸酯),乙酸酯纤维素丁酸丁酯,丁酸丁酯,聚丁二烯,聚二烯丙烯和聚乙烯基和聚氯乙烯。结论:这项研究成功地鉴定出了Jeneponto沿海地区的贝类和鱼类中发现的八种类型的微型聚合物。最常见的是氯化乙烯。这些发现表明,海洋生物和人类暴露于微塑料中,这可能是有害的,但是需要进一步的研究以了解相关的环境健康影响和风险的全部程度。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。
目标和意义:本项目的目标是合成和表征新型改性硼化镁 MgB2 材料,该材料具有改进的氢循环动力学和储氢能力,并证明其能够满足美国能源部 (DOE) 的储氢目标。如果成功,固态改性 MgB2 材料将比市场上的高压压缩 H2 (700 bar) 或液态 H2 替代车载储氢系统更安全、更便宜。背景:硼氢化镁 Mg(BH4)2 是少数几种已证实重量储氢容量大于 11 wt% 的材料之一,因此已证实可用于满足 DOE 储氢目标的储氢系统。然而由于动力学极其缓慢,Mg(BH 4 ) 2 和 MgB 2 之间的循环只能在高温(~400°C)和高充电压力(~900 bar)下完成。最近,四氢呋喃 (THF) 与 Mg(BH 4 ) 2 复合已证明可以大大改善脱氢动力学,能够在 <200°C 下快速释放 H 2 以高选择性生成 Mg(B 10 H 10 )。然而,这些类型的材料的氢循环容量要低得多。该项目专注于开发改性 MgB 2,方法是将镁硼醚脱氢扩展到 MgB 2 或在添加剂存在下直接合成改性 MgB 2。该项目旨在改善镁硼化物/镁硼氢化物系统的氢循环动力学和循环容量,以帮助实现 DOE 氢存储的最终目标。该项目旨在 1) 合成和表征新型改性镁硼化物,尤其是醚改性材料,与未改性的 MgB 2 相比,其氢循环动力学和氢存储容量有所改善;2) 确定新型改性硼化物的可逆氢化是否显示出显著改善的氢循环动力学和循环容量,达到实际可行的水平。这个由 HNEI 领导的项目是 UH(HNEI 和化学系)和 DOE-Hydrogen Materials 的合作成果
乳腺癌是全球面临的重大健康挑战,需要不断探索新的治疗方法。细辛酮是一种来自菖蒲属的生物活性化合物,具有良好的抗癌特性,但其对乳腺癌细胞的影响尚未得到充分研究。本研究使用体外和计算机模拟方法研究了细辛酮对乳腺癌细胞系的抗癌潜力。使用 DPPH 自由基清除试验评估了细辛酮的抗氧化活性,结果显示其对自由基具有剂量依赖性(25.56%、32.18%、47.73%、54.83% 和 66.74%)。MTT 试验显示细胞活力呈剂量依赖性下降,表明细辛酮对乳腺癌细胞具有细胞毒性。 mRNA 表达分析表明,针对凋亡调节因子,例如 Bax(1、1.3、1.52 倍变化上调)和 Bad(1、1.4 和 1.6 倍变化上调)基因表达,表明细辛醚通过内在途径诱导细胞凋亡。此外,细辛醚抑制 Akt mNRA(1、0.6 和 0.4 倍变化下调)、caspase-3(1、1.4 和 1.7 倍变化上调)和细胞色素 c mRNA(1、1.2 和 1,54 倍变化上调),表明干扰关键的癌症进展途径。分子对接研究预测细辛醚与参与细胞凋亡和细胞存活的关键蛋白质(包括 Bax、Bad、细胞色素 c、caspase 3 和 Akt)之间存在有利的结合相互作用。这些发现共同强调了细辛醚对乳腺癌细胞的多方面抗癌机制。这项研究强调了阿魏酸作为乳腺癌天然治疗剂的潜力,为进一步探索转化研究和临床试验提供了途径。本研究大大提高了我们对阿魏酸抗癌特性的认识,为开发新的有效乳腺癌疗法提供了有希望的方向。
以及基于碳的纳米电子和旋转型的潜在应用。除了可调节的边缘结构和宽度外,GNR中引入曲率是其化学物理特性修饰的强大结构特征。在这里,我们报告了第一个基于pyrene的GNR(PygNR)的有效溶液合成,该溶液通过一锅K区氧化和其相应良好可溶性四氢苯二酚基于多苯乙烯前体的曲线几何形状和曲面几何形状。有效的A 2 B 2型铃木聚合和随后的Scholl反应可提供高达〜35 nm长的弯曲GNR轴承和扶手椅。模型化合物(1)的构造是从四氢苯二酚基的寡苯基前体中的pygnr切割,证明了单锅K区域氧化和Scholl环化的概念和效率,这是由单晶X射线衍射分析清楚地揭示的。PYGNR的结构和光学性质由Raman,FT-IR,固态NMR和UV-VIS分析研究,并支持DFT计算。pygNR显示在680 nm处的吸收最大值,表现为〜1.4 eV的狭窄光带隙,作为低频带GNR的资格。此外,PYGNR上的THZ光谱估计其
测试项目 限值 单位 MDL A3 铅 (Pb) 1000 mg/kg 2 ND 汞 (Hg) 1000 mg/kg 2 ND 镉 (Cd) 100 mg/kg 2 ND 六价铬 (Cr(VI)) 1000 mg/kg 8 ND 多溴联苯 (PBB) 1000 mg/kg - ND 一溴联苯 (MonoBB) - mg/kg 5 ND 二溴联苯 (DiBB) - mg/kg 5 ND 三溴联苯 (TriBB) - mg/kg 5 ND 四溴联苯 (TetraBB) - mg/kg 5 ND 五溴联苯 (PentaBB) - mg/kg 5 ND 六溴联苯 (HexaBB) - mg/kg 5 ND 七溴联苯 (HeptaBB) - mg/kg 5 ND 八溴联苯 (OctaBB) - mg/kg 5 ND 无溴联苯 (NonaBB) - mg/kg 5 ND 十溴联苯 (DecaBB) - mg/kg 5 ND 多溴二苯醚 (PBDE) 1000 mg/kg - ND 单溴二苯醚 (MonoBDE) - mg/kg 5 ND
Adacel ® 磷酸铝、甲醛、2-苯氧乙醇、戊二醛,预充式注射器的尖端盖可能含有乳胶 Boostrix ® 甲醛、氢氧化铝、氯化钠、聚山梨醇酯 80,预充式注射器的尖端盖可能含有乳胶 Tenivac ® 磷酸铝、甲醛、氯化钠,预充式注射器的尖端盖可能含有乳胶 TDVAX™ 磷酸铝、甲醛、硫柳汞 B. 脑病:(Tdap)在接种前一剂 DTP、DTaP 或 Tdap 后 7 天内,出现无法归因于其他可识别原因的脑病(例如昏迷、意识水平下降或长时间癫痫发作)。这些人群应接种 Td 代替 Tdap。5 7. 警告和注意事项
聚合条件:溶剂:水(35毫升),压力:20 bar,发起者:硫酸钾(KPS),表面活性剂:五氟氯辛酸铵酸铵盐(APFO)(启动器浓度为10倍),速度:750 rpm; A来自GPC(DMF,40 O C,PS标准,RI检测器)(ɖ:多分散指数); b来自DSC:加热和冷却周期从30到200 O C,10 O C/min。(T M:熔化温度和T C:结晶温度); C使用以下公式从1 H NMR确定:[ʃ2.92ppm/(ʃ2.92ppm +ʃ2.26ppm)] x 100; d使用以下公式46:f(β)=aβ /(1.3aα +aβ)d ftir d;其中α和Aβ分别对应于763和840 cm -1频段的FTIR光谱中的吸收率; E来自FTIR(CM -1):α763,β840和γ1233。