摘要:在单喷丝头静电纺丝均匀混合溶液的过程中,通过 PEO 和 BW 的自组织,制备了由聚环氧乙烷 (PEO)、蜂蜡 (BW) 和 5-硝基-8-羟基喹啉 (NQ) 制成的芯鞘纤维组成的纤维材料。此外,采用同样的方法,还可以制备由 PEO、聚(L-丙交酯) (PLA) 和 NQ 或 5-氯-7-碘-8-羟基喹啉 (CQ) 以及 PEO、聚(ε-己内酯) (PCL) 和 NQ 制成的芯双鞘纤维组成的纤维材料。分别用己烷和四氢呋喃对 BW 和聚酯进行连续选择性萃取,结果表明 PEO/聚酯/BW/药物的芯双鞘纤维由 PEO 芯、聚酯内鞘和 BW 外鞘组成。为了评估 PEO/BW/NQ、PEO/PLA/BW/NQ、PEO/PCL/BW/NQ 和 PEO/PLA/BW/CQ 纤维材料用于植物保护的可能性,使用植物病原微生物(皱褶假单胞菌、禾谷镰刀菌和燕麦镰刀菌)和有益微生物(绿针假单胞菌、解淀粉芽孢杆菌和棘孢木霉)进行了微生物学研究。发现纤维材料对植物病原微生物和有益微生物均具有抗菌和抗真菌活性。这是首次报道装载 8-羟基喹啉衍生物的纤维材料不仅对植物病原微生物具有活性,而且对农业中重要的有益微生物也具有活性。
当今的现代社会严重依赖塑料材料的使用。由于塑料材料具有多样性和定制性,在过去一个世纪中,这些材料已成为我们先进生活的几乎所有领域中不可或缺的一部分,例如交通、电子、建筑、家庭或包装,其中包装占最大部分。[1] 然而,许多海洋和陆地生态系统正面临着巨大的威胁,这是由于不可降解的石油基塑料造成的环境污染仍在加剧。[1a,2] 另一方面,高生产率以及我们在关键生活情况下对塑料的依赖,例如抗击 COVID-19 需要大量由塑料制成的口罩和注射器,这表明人类需要这些材料来维持现代生活水平。[1b,3] 为了应对这些全球挑战,需要有效的废旧塑料回收策略,促进这些材料的循环利用。 [4] 除了传统的机械回收方法,如当今热塑性塑料(如聚对苯二甲酸乙二醇酯 (PET))的标准熔融加工方法外,化学
合成至少 5 g PET/TH - 至少 15 kDa - 分解为至少 25 wt % 单体。 - 至少 1 g 回收的单体/低聚物将重新聚合至至少 1 kDa(通过 GPC)并通过 DSC 进行表征。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
信使核糖核酸(mRNA)最近在临床应用方面取得了重要进展,为传染病和癌症提供了一种有希望的治疗选择。然而,mRNA分子的性质使其生物利用度差且在体内不稳定,阻碍了其进一步的临床应用。因此,安全有效地将mRNA疗法递送至靶位对于其成功转化为临床环境至关重要。人们已经探索了用于mRNA递送的各种载体。其中,聚酯及其类似物(一类可生物降解的聚合物)在mRNA递送方面表现出巨大的潜力。在这篇简短的综述中,作者简要介绍了mRNA疗法、其治疗应用和递送挑战。然后,作者介绍了用于mRNA递送的聚酯材料的典型例子,以强调当前的进展并讨论基于聚酯的mRNA递送载体的合理设计所面临的挑战。作者希望为核酸递送的可生物降解载体的设计提供新的见解,从而促进其进一步的临床转化。
本研究的主要目的是研究夹层复合材料的分层损伤。夹层结构的这种损伤模式对结构行为尤其有害。芯部开裂和表面/芯部分离是软木团芯夹层结构中常见的失效模式。这些测试的夹层样品由软木团芯制成,夹在玻璃纤维聚酯(04 层层压板)之间作为表皮。实验研究包括精心制作不同类型的夹层样品,以确定它们在模式 I 中的断裂。双悬臂梁 (DCB) 样品通过初始裂纹的大小来区分。后者是通过在精心制作过程中在芯部和上层表皮之间放置具有不同初始裂纹长度(a= 30、40、50、60 和 70 毫米)的铝膜来获得的。裂纹的萌生
1. 背景信息 位于弗吉尼亚州里士满的国防后勤局 (DLA) 航空部门的航空生产支持部 (VA) 负责为整个 DLA Enterprise 存储和支持包含胶片 MYLAR 的所有申请。航空生产支持部发现,数字 MYLAR 在数据存储和使用方面比胶片介质更有效。使用数字 MYLAR 可以消除与复制胶片副本相关的前置时间。DLA Enterprise 在采购备件时使用的数千张胶片 MYLAR 已转换为数字格式。新材料定期从军事部门转移到 DLA Enterprise,需要对 MYLAR 进行数字化。2. 范围 承包商应提供所有监督、劳动力、材料和设备,以将胶片 MYLAR 转换为数字 MYLAR。DLA 航空生产支持部胶片将提供胶片 MYLAR。3. 目标 详细要求
目的:使用化疗药物对抗癌症伴随着高毒性,因为它们无法区分癌细胞和正常细胞。因此,癌症治疗研究的重点是将药物靶向输送到癌细胞。在这里,我们报告了一项体外研究,研究了叶酸-聚乙二醇-聚琥珀酸丙二醇酯纳米颗粒 (FA-PPSu-PEG-NPs) 作为载体在乳腺癌和宫颈癌细胞系中靶向输送抗癌药物紫杉醇。方法:通过体外药物释放研究和细胞毒性测定对载紫杉醇的 FA-PPSu-PEG-NPs 进行表征。通过活细胞成像监测不同癌细胞系中 NPs 的细胞摄取和内化机制。检查了这些细胞系中叶酸受体-α (FOLR1) 的表达,并通过游离叶酸竞争研究了 FOLR1 介导的 FA-PPSu-PEG-NPs 的特定进入。使用其他内吞途径的抑制剂,还研究了替代的、不依赖 FOLR1 的 NPs 摄取途径。结果:载有紫杉醇的 PPSu-PEG-NPs 的药物释放实验表明,紫杉醇的释放时间延长了数天。在癌细胞系中监测到,载有紫杉醇的 PPSu-PEG-NPs 的细胞毒性与游离药物相似。用游离紫杉醇或载有紫杉醇的 PPSu-PEG-NPs 处理的细胞的活体成像显示微管蛋白特异性细胞周期停滞,动力学相似。叶酸结合的 NPs (FA-PPSu-PEG-NPs) 靶向 FOLR1 受体,如游离叶酸竞争 FA-PPSu-PEG-NPs 细胞摄取所示,在一些测试的细胞系中。然而,由于 FOLR1 在癌细胞系中的表达差异,以及不同细胞类型所使用的不同内吞途径之间的内在差异,也使用了其他纳米粒子进入细胞的机制,揭示了依赖于动力蛋白的内吞作用和大胞饮作用途径至少部分介导 FA-PPSu-PEG NPs 进入细胞。结论:我们的数据证明载紫杉醇的 FA-PPSu-PEG-NPs 可用于靶向递送药物,FA-PPSu-PEG-NPs 可用作其他抗癌药物的载体,并且它们的细胞摄取是通过 FOLR1 受体特异性内吞作用和大胞饮作用的组合介导的。探索不同的细胞摄取机制可以提高治疗效果或减少抗癌药物的剂量。关键词:叶酸-PPSu-PEG 共聚物、纳米粒子、药物输送、紫杉醇、靶向化疗、乳腺癌