2 杜克大学基因组与计算生物学中心,北卡罗来纳州达勒姆 27708,美国 3 杜克大学生物医学工程系,北卡罗来纳州达勒姆 27708,美国 4 杜克大学遗传学与基因组学大学项目,北卡罗来纳州达勒姆 27708,美国 5 杜克大学医学中心综合基因组学分部生物统计学与生物信息学系,北卡罗来纳州达勒姆 27708,美国 6 杜克大学医学中心外科系,北卡罗来纳州达勒姆 27708,美国
此资源是由技术援助提供商准备的,仅旨在提供指导。本文件的内容,除非基于法定或法规权限或法律,但没有法律的力量和效力,也不意味着以任何方式约束公众。本文件仅旨在向公众提供有关法律或代理政策中现有要求的清晰度。
在许多应用中高质量晶状膜提供高质量薄膜的能源合成。在这里,我们通过利用扩散聚集过程来设计一种无毒溶剂方法来生产高度结晶的Mapbi 3钙钛矿。异丙醇溶液基于三碘化甲基三碘二碘(MAPBI 3),在这种情况下,晶体生长起始开始于远离平衡的不稳定悬浮液开始,随后的结晶驱动于溶解度参数。通过扫描透射电子显微镜(Stem)监测晶体的形成,观察到随着时间的流逝而演变成具有高晶体纯度的大晶粒,生长的小结晶中心。茎模式下的能量色散X射线光谱(EDS)显示新形成的晶粒中有富含Pb的核心壳结构。纳米光束电子衍射(NED)扫描定义的PBI 2晶体在PB富壳中具有新形成的晶粒中的单晶Mapbi 3核心。一周搅拌后,相同的聚集悬浮液仅表现出仅具有单晶体MAPBI 3结构的晶粒。NED分析显示了从核心壳结构到单晶晶粒的动力学缓慢过渡。这项研究对可能导致亚化学计量晶界影响的因素提出了有影响力的见解,从而影响太阳能电池性能。另外,已经提出了钙钛矿晶粒的结构,形态和光学特性。随后通过在低空烤箱中蒸发溶剂来制备高度结晶颗粒的粉末。薄膜Mapbi 3太阳能电池是通过溶解粉末并将其涂在经典制造路线中制造的。MAPBI 3太阳能电池的冠军效率为20%(19.9%),平均效率约为17%,而滞后效应低。在这里突出了制造无毒溶剂的材料结构的策略。这里设计的单晶增长既可以为材料的货架存储以及设备的更灵活的制造。该过程可能会扩展到其他字段,中间多孔框架和大型表面积将对电池或超级电容器材料有益。
本文探讨了灰尘效应对光伏系统的影响,以及作为光伏、风电、火电和储能系统聚合器的电力市场代理的利润。储能确保套利和平滑光伏和风电的变化。市场代理打算在日前市场中获取投标,同时考虑到灰尘效应对光伏的影响。提出了一种支持决策系统的公式,该公式通过基于利润的机组组合问题通过随机规划方法解决,并考虑到虚拟发电厂的运行特性。光伏、风电和市场价格不确定性是从历史数据场景中得出的输入数据。案例研究展示了随机规划方法的优势,以及与将不确定性整合到储能系统调度建模和灰尘效应对利润的影响有关的见解。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
人们期待血小板生物学方面有新的进展,而且由于血液中血小板聚集体的存在与心肌梗塞、脑梗塞等血栓性疾病有关,这一发现也有望在血栓性疾病的临床诊断方法、药理学和治疗方面带来突破性的应用。 3.公告概要:东京大学研究生院理学研究科研究生周雨琪和合田圭介教授,与东京大学研究生院医学院及东京大学医院检验医学部助理教授安本淳(研究时)、弥富丰教授合作,在世界上首次发现血液中的血小板聚集体(注1)可以进行分类,并成功开发出一种名为“智能血小板聚集体分类器(iPAC)”的定量建模方法(图1)。 iPAC是利用特殊显微镜获取的大量血小板和血小板聚集体的图像,利用深度学习(注2)构建的人工智能系统。他们利用iPAC注意到,血小板聚集体的形态(形状、大小、复杂程度等)会根据刺激物质(激动剂;注3)的种类而发生细微差异,并取得了根据血小板聚集体的形态来识别和分类诱导活化的激动剂种类的突破性发现。 iPAC是阐明血小板聚集机制的有力工具。此外,由于血液中血小板聚集物的存在与导致心肌梗塞和脑梗塞的动脉粥样硬化血栓形成以及最近新型冠状病毒感染引起的血栓形成有关,因此预计iPAC将应用于血栓性疾病的开创性临床诊断方法、药理学方法和治疗方法。 这项研究得到了日本内阁府科学技术创新委员会、日本学术振兴会 (JSPS) 核心对核心计划和白石基金会领导的 ImPACT 计划的支持。该研究成果将于2020年5月12日(英国时间)在eLife网络版上发表。
meen 5000-能量:基本原理(3)Meen 5110-替代能量(3)Meen 5200- HVAC原理(3)Meen 5310-传导和辐射传热(3)
英国公共卫生部的存在是为了保护和改善国民的健康和福祉,减少健康不平等。我们通过世界领先的科学、研究、知识和情报、宣传、合作以及提供专业的公共卫生服务来实现这一目标。我们是卫生和社会保健部的执行机构,也是一个具有运营自主权的独特交付组织。我们为政府、地方政府、NHS、议会、行业和公众提供基于证据的专业、科学和交付专业知识和支持。英国公共卫生部,惠灵顿大厦,133-155 Waterloo Road,伦敦 SE1 8UG 电话:020 7654 8000 www.gov.uk/phe Twitter:@PHE_uk Facebook:www.facebook.com/PublicHealthEngland 编写者:英国公共卫生部免疫和对策司的 Zahin Amin-Chowdhury、Sarah Collins、Meera Chand、Norman K. Fry、Mary Ramsay 和 Shamez Ladhani,以及英国公共卫生部呼吸道和疫苗可预防细菌参考单位的 Carmen Sheppard 和 David Litt。我们感谢英国公共卫生部疫苗可预防侵袭性细菌感染论坛、疫苗科学和监测组、英国公共卫生部健康保护小组、NHS 苏格兰国家服务局、威尔士公共卫生局和北爱尔兰公共卫生局的额外贡献。如对本文件有疑问,请联系:Shamez Ladhani,英国公共卫生部免疫与对策司,61 Colindale Avenue, Colindale, London NW9 5EQ。电子邮箱:shamez.ladhani@phe.gov.uk © 英国皇家版权 2020 您可以根据开放政府许可证 v3.0 的条款,以任何格式或媒介免费重新使用此信息(不包括徽标)。要查看此许可证,请访问 OGL 。如果我们发现任何第三方版权信息,您需要获得相关版权持有人的许可。2020 年 2 月出版 PHE 出版物 PHE 支持联合国网关编号:GW-1098 可持续发展目标
我们研究了灰灰含量的影响,并用混凝土浪费和大理石废物替换了碎石骨料,并在预制的混凝土互锁块中(PCIB)中的大理石浪费。我们已经将PCIB的特性与三种不同的骨料替代比产生的烟灰进行了比较。确定了PCIB的抗压强度,拉伸强度,密度,明显的孔隙率,减轻体重的吸水,磨损分解,碱性 - 硅利反应和冻结 - 透射性抗性。将PCIB与压碎的砂岩进行比较时,用混凝土废物和大理石废物替换碎石石,从而降低物理和机械性能。相比之下,用灰灰替换水泥(从10%到20%)对增加PCIB的重要特性具有显着影响。2011 Elsevier Ltd.保留所有权利。
