假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
简介:肺癌的特征是肺组织内细胞增殖不受控制,是全球癌症相关死亡的主要原因。传统药草荜茇因其有据可查的抗癌特性而成为肿瘤学研究的重要竞争者,表明其具有开发新疗法的潜力。方法:本研究采用网络药理学和组学方法,通过识别荜茇的生物活性成分及其相应的分子靶点,阐明荜茇的抗肺癌潜力。结果:通过全面的文献综述和综合药用植物化学和治疗学数据库 (IMPPAT),我们从荜茇中鉴定出 33 种生物活性分子。随后,使用 SwissTargetPrediction、SuperPred 和 DIGEP-Pred 等工具进行的分析有助于分离出 676 个潜在靶点,其中 72 个与通过治疗靶点数据库 (TTD)、人类在线孟德尔遗传 (OMIM) 和 GeneCards 等数据库确定的 666 个肺癌相关遗传标记相交。通过蛋白质-蛋白质相互作用 (PPI) 网络、基因本体论、通路分析、箱线图和总体生存指标的进一步验证强调了 7-表-eudesm-4(15)-ene-1 β、去甲氧基哌拉汀、3,4,5-三甲氧基肉桂酸甲酯、6-α-二醇和马兜铃二酮等化合物的治疗潜力。值得注意的是,我们的研究结果再次证实了肺癌基因(如 CTNNB1、STAT3、HIF1A、HSP90AA1 和 ERBB2)的重要性,这些基因对各种细胞过程至关重要,在癌症发生和发展中起着关键作用。分子对接评估显示 6-α-二醇与 HIF1A 之间存在明显的亲和力,强调了它们作为肺癌治疗剂的潜力。结论:这项研究不仅突出了 P. longum 的生物活性化合物,还加强了其抗癌机制的分子基础,为未来的肺癌治疗铺平了道路。
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
本研究旨在通过多步骤工艺开发一种有效的生物制剂,以防止新鲜柑橘类水果采后真菌腐烂,该工艺包括从柑橘果皮中分离和鉴定乳酸菌 (LAB)、选择具有高抗真菌活性的 LAB 菌株、对无细胞上清液 (CFS) 进行化学表征、配制用 LAB 发酵物激活的柠檬皮粉状培养基 (LM)、对发酵 LM 进行化学表征以及评估新生物制剂对抗蓝霉菌的功效。从柑橘类水果皮中回收了 13 种 LAB,并通过肽质量指纹图谱法进行鉴定。使用双培养覆盖法和扩散琼脂测定法,分别测试了从柑橘类水果中分离的 LAB 以及从其液体培养物中获得的无细胞上清液 (CFS) 对抗多种植物病原真菌和卵菌的抗真菌活性。两个分离株被命名为 N3B2 和 M2B2,均被鉴定为植物乳杆菌,因其相关的抗真菌活性而被选中。这两个分离株都表现出广谱拮抗活性,包括柑橘果实的主要采后病原体,例如指状青霉菌和意大利青霉菌,分别是绿霉菌和蓝霉菌的病原体,链格孢菌,胶孢炭疽菌,喀斯特炭疽菌,柑橘腐霉菌和Ph. nic otianae。N3B2 和 M2B2 分离株被用作发酵剂,以发酵富含营养水溶液 (LM) 的柠檬皮粉培养基。通过使用 N3B2 和 M2B2 分离株发酵 LM 获得的两种制剂对用于初步筛选 LAB 的相同广泛病原体表现出强大的体外抑制活性。此外,这两种基于 LM 的配方降低了蓝霉感染的严重程度,并抑制了人工接种的柠檬果实上 P. italicum 的孢子形成。基于 LM 的生物配方的化学分析表明,它们的抗真菌活性很可能是由于乳酸菌衍生的酸性成分,包括乳酸、乙酸、DL-3-苯基乳酸、3-4-二羟基氢化肉桂酸、水杨酸香草酸。这些创新的基于 LM 的生物配方用乳酸菌衍生的抗真菌化合物激活,将被用作可食用和可生物降解的水果涂层,以延长新鲜柑橘水果的保质期并防止收获后腐烂。
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。