咖啡因和瓜拉纳·塞尔西修斯(Guarana Celsius)以及其他NCAA Celsius未禁止使用的能量饮料被NCAA禁止,正如在几篇文章和社交媒体中错误地报道的那样。不幸的是,有很多错误的信息表明,人参,瓜拉纳,L-肉碱和牛磺酸等成分是非法的兴奋剂,或者瓜拉纳在NCAA法规下受到全面禁令。他们不是。此处提供的信息旨在提供NCAA学生运动员在考虑摄氏摄氏或可能含有咖啡因,瓜拉纳(Guarana)或其他突出显示的其他成分时可以依靠的准确信息。咖啡因没有被NCAA禁止,而是受到限制。学生运动员必须违反尿液中NCAA咖啡因限制的每毫升15微克(UG/ml,百万分之十)才能根据2021-2022 NCAA药物测试计划来测试阳性。根据CPSDA,NCAA体育科学研究所,美国奥运会委员会和ISSN的CPSDA,大约需要500 ng/ml以超过15 ug/ml NCAA咖啡因阈值。新陈代谢可能会有所不同,较低的数量可能是某些学生运动员的关注点。ISSN状态需要10 mg/kg体重来违反奥林匹克药物测试中使用的12 ug/ml阈值,这对应于110-300磅范围内的运动员的500-1,362 mg。
简介:肠道微生物群 (GM) 是 GM 健康的重要介质,已被确定为多种疾病的起源,因为它会影响中枢神经系统中的细胞信号传导和 T 细胞受体通路。多种 microRNA 通过 GM 干预参与信号网络。GM 和 miRNA 之间的相互作用在血管功能障碍中起着至关重要的作用。GM 可以代谢左旋肉碱、胆碱和磷脂酰胆碱,并产生与动脉粥样硬化过程相关的血管毒性代谢物,如三甲胺-N氧化物 (TMAO)。营养学和饮食疗法代表了重要的策略,尤其是使用植物来源的 miRNA 来修改 GM。目标:进行系统综述,以强调肠道微生物群和 microRNA 在心血管疾病事件中的主要作用。方法:本研究遵循简明的系统综述模型 (PRISMA)。文献检索过程于 2023 年 3 月至 5 月进行,基于 Scopus、PubMed、Science Direct、Scielo 和 Google Scholar 开发,使用 2002 年至 2022 年的科学文章。根据 GRADE 工具,证据质量低下归因于病例报告、社论和简短交流。根据 Cochrane 工具分析了偏倚风险。结果和结论:共发现 126 项研究进行合格性分析,然后从 64 项研究中选出 42 项进行本系统评价。根据 GRADE 工具,大多数研究的结果显示同质性,X 2 =88.7%>50%。结论是肠道微生物群可能受饮食、遗传和环境的影响
全氟辛酸(PFOA)是一种合成器官氟化物表面活性剂,与人类和动物的几种毒性作用相关。尤其是,已经观察到,PFOA治疗小鼠会导致与募集的棕色脂肪组织(BAT)相关的体重减轻,包括增加的解偶联蛋白1(UCP1)。目前尚不清楚这种蝙蝠募集背后的分子机制。为了研究PFOA可能的细胞自治作用的外观,我们用PFOA处理了棕色和白色(腹股沟)脂肪细胞的原发性培养物,或与非氟化的等效octanoate或使用媒介物处理的48小时(从分化的第5天到第7天,持续48 h)。pFOA本身增加了UCP1和肉碱棕榈酰转移酶1A(CPT1α)(与热生成相关的基因)的基因表达(mRNA水平)。此外,PFOA增加了脂肪酸结合蛋白4(FABP4)和过氧化物酶体增殖物激活的受体α(PPARα)(脂肪生成相关基因)的表达。在暴露于PFOA的棕色特征细胞中,UCP1的蛋白质水平也升高。这种增加更多是由于表达UCP1的细胞比例增加,而不是每个细胞的UCP1水平升高。在同时肾上腺素能刺激下,PFOA诱导的变化更加明显。八体酸盐对脂肪细胞的诱导不太明显影响,而不是PFOA。因此,PFOA本身增加了棕色和白色脂肪细胞中的热标记水平。这可以增强暴露于该化合物的动物(和人类)的能量代谢,从而导致负能量平衡,从而导致健身降低。
Lamb Meal, Chicken Meal, Oatmeal, Fresh Chicken, Whole Grain Barley, Whole Brown Rice, Millet, Chicken Fat (Preserved With Mixed Tocopherols, a Natural Source of Vitamin E), Salmon Meal (Preserved with Vitamin E and Rosemary Extract), Green Peas, Whole Eggs, Chicken Liver, Potassium Chloride, Salmon Oil (Source of DHA), Quinoa, Flaxseed, Lecithin, DL蛋氨酸,菊苣根(菊粉),维生素A,维生素D3,维生素E,烟酸蛋白,维生素C,肌醇,pantotol,D-钙硫酸盐,维生素BL,核糖叶艾比,β-胡萝卜素,维生素B6,维生素B6,叶黄素,生物蛋白B12,蛋白蛋白蛋白蛋白蛋白蛋白蛋白,蛋白蛋白蛋白质,质子蛋白蛋白质,柔韧性蛋白质,蛋白蛋白,蛋白蛋白,蛋白蛋白,蛋白质,蛋白蛋白,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白蛋白,蛋白质,蛋白质碘酸钙,硒酵母,番茄(番茄的天然来源),葡萄糖胺,胆碱氯化物,丝兰schidigera提取物,l-肉碱,曼南纳 - 寡糖,胡萝卜,苹果,苹果,苹果,甜食,蓝莓,小溪,绿色糖果(绿色糖果蛋白酶)(绿色糖果蛋白酶)(绿色糖浆蛋白酶(绿色糖)(嗜酸菌,乳杆菌,肠球菌,粪肠球菌,双杆菌嗜热杆菌),百里香,卡西亚,茴香,茴香,辣根,杜松,杜松,姜,姜,Yarrow,Rosemary提取物。
通过调节主要神经元的突触抑制 (I) 和兴奋 (E) 来稳态控制神经元的兴奋性在大脑成熟过程中非常重要。宫内大脑发育的基本特征,包括局部突触 E-I 比率和生物能量学,可以通过表现出高度规则的嵌套振荡网络事件的脑类器官 (CO) 来建模。因此,我们评估了一个“Phase Zero”临床研究平台,该平台结合了宽带可见光/近红外 (NIR) 光谱和电生理学,研究基于局部场电位光谱指数的 E-I 比率和基于线粒体细胞色素 C 氧化酶 (CCO) 活性的生物能量学。我们发现健康对照 iPSC CO 的年龄从 23 天到 3 个月对 CCO 活动 (卡方 (2, N = 10) = 20, p = 4.5400e−05) 和 30–50 Hz 之间的频谱指数 (卡方 (2, N = 16) = 13.88, p = 0.001) 有显著影响。此外,在来自精神分裂症 (SCZ) 患者 iPSC 的 34 天大的 CO 中,发现胆碱 (CHO)、艾地苯 (IDB)、R-α-硫辛酸加乙酰-l-肉碱 (LCLA) 等药物对 CCO 活性 (卡方 (3, N = 10) = 25.44, p = 1.2492e−05)、1 至 20 Hz 之间的光谱指数 (卡方 (3, N = 16) = 43.5, p = 1.9273e−09) 和 30–50 Hz (卡方 (3, N = 16) = 23.47, p = 3.2148e−05) 有显著影响。我们提出了一种多模式方法的可行性,该方法结合了电生理学和宽带可见光-近红外光谱,用于监测脑器官模型中的神经发育,可以补充传统的药物设计方法来检验具有临床意义的假设。
图2饮食模式调节肠道干细胞(ISC)功能。(a)禁食,快速恢复和卡路里限制。禁食通过启动脂肪酸氧化(FAO)程序来增强ISC功能,并取决于肉碱棕榈酰转移酶1A(CPT1A)。其他调节器(例如PRDM16和HNF4A/G)也通过调节粮农组织来调节ISC。快速恢复后刺激MTORC1并通过多胺代谢程序激活蛋白质合成。结果,ISC增殖和肿瘤发生都升高。在卡路里限制期(CR)期间,由于雷帕霉素复合物1(MTORC1)的机理靶标降低,paneth细胞旁分泌因子循环ADP核糖(CADPR)。CADPR进入ISC,并通过SIRT/MTORC1-S6K1信号传导促进ISC和Paneth细胞的增殖。CR还增强了储备ISC中的DNA损伤性,从而保留了再生能力。(b)高脂,高脂/高糖和生酮饮食。高脂饮食(HFD)通过过氧化物酶体增殖物 - 活化受体δ(PPARδ)和LXR/FXR信号传导激活β-蛋白酶靶基因,从而促进ISC增殖。此外,PPARδ使祖细胞能够恢复干细胞特征,从而促进肿瘤发生。高脂/高糖饮食(HFHSD)通过激活固醇调节性元件结合蛋白1(SREBP1,用于脂肪酸合成),PPARγ信号传导和胰岛素受体-FR-FR-FR-AKT途径来诱导粘膜变化和肠道疾病。酮体衍生自生酮饮食(KTD)或禁食会影响ISC茎和通过3-羟基-3-甲基戊二核酸COA合成酶2(HMGCS2)-Class-Class-Class 1组蛋白脱乙酰基酶(HDAC) - NOTCH信号的分化。
摘要背景患有单心室 (SV) 心脏病的儿童和青少年经常会患上难治性心力衰竭 (HF)。我们对这背后的分子和生化原因的理解并不完善。因此,迫切需要能够预测结果并为治疗提供合理依据并增进我们对 HF 基础的理解的生物标志物。目的我们试图确定代谢组学方法是否能提供 SV 儿童和青少年 HF 的生化特征。如果有意义,这些分析物可作为预测结果和告知 HF 生物学机制的生物标志物。方法我们应用了一种多平台代谢组学方法,由质谱 (MS) 和核磁共振 (NMR) 组成,分别得到了 495 个和 26 个代谢物测量值。血浆样本来自一组年龄在 2-19 岁之间的年轻 SV 受试者的横断面,其中 10 个对照 (Con) 受试者和 16 个 SV 受试者。在 SV 受试者中,九人被诊断为充血性 HF (SVHF),七人未患 HF。代谢组学数据与临床状态相关联,以确定是否存在与 HF 相关的特征。结果 3 个队列的年龄、身高、体重或性别没有差异。然而,使用 ANOVA 对代谢组学谱进行统计分析显示,44 种代谢物在各队列之间存在显著差异,其中 41 种通过 MS 分析,3 种通过 NMR 分析。这些代谢物包括酰基肉碱、氨基酸和胆汁酸,这将 Con 与所有 SV 受试者区分开来。此外,代谢物谱可以区分 SV 和 SVHF 受试者。结论这些是首次显示与 SV 儿童和年轻人 HF 相关的明确代谢组学特征的数据。有必要进行更大规模的研究以确定这些发现是否可以预测及时进展为 HF 以提供干预。
有一种称为代谢健康肥胖的肥胖个体的表型,其心脏代谢风险降低。该表型提供了一个有价值的模型,用于研究连接肥胖和代谢改变(例如2型糖尿病)(T2DM)的机制。以前,在一群病态肥胖的妇女中,我们观察到代谢健康的肥胖个体和与T2DM相关的T2DM的脂质代谢物模式不同。为了验证这些发现,我们进行了脂质组学的互补研究。在这项研究中,我们评估了与质谱仪相关的液体色度图表,对来自209名女性的血清样品,73名正常重量女性(对照组)和136名病态肥胖妇女的血清样品进行了未靶向的脂质组学分析。,来自65个代谢健康的病态肥胖,与相关的T2DM为71。在这项工作中,我们发现了神经酰胺,鞘磷脂,二酰基和三酰基甘油,脂肪酸和磷酸乙醇胺在病态肥胖与正常体重的水平升高。相反,指出了降低水平的酰基肉碱,胆汁酸,磷脂酰胆碱,磷脂酰胆碱(PC),磷脂酰肌醇和磷酸乙醇胺PE(O-38:4)。Fur- thermore, comparing morbid obese women with T2DM vs metabolically healthy MO, a distinct lipid profile emerged, featuring increased levels of metabolites: deoxycholic acid, diacylglycerol DG (36:2), triacylglycerols, phosphatidylcholines, phosphoethanolamines, phosphatidylinositols, and抒情磷脂酰肌醇LPI(16:0)。相反,我们发现T2DM与代谢健康的MO的病态肥胖女性中这些脂质的水平升高。得出结论,分析了这两个比较,我们观察到脱氧胆酸,PC(34:3)和PE(O-38:4)的水平降低,而病态肥胖女性与正常体重。可以探索这些代谢物的这些特征作为病态肥胖妇女T2DM代谢风险的潜在标志。
证据结论水平和来源3的情绪稳定器中的轻度甲状腺功能减退症可以改善认知缓慢。c dols,2013年第4级专家认为,多巴胺激动剂和对手可以改善儿童和青少年执行职能的疾病。d hosenbocus,2012级2,最高尼拉美酸盐的认知副作用很可能会在治疗过程中降低。b Deaton,2014年3级有迹象表明,混乱主要发生在丙戊酸和61-80岁的丙戊酸治疗的第1周内发生。此副作用是可逆的。c nanau,2013年级别2,左旋多氨酸可能有效地治疗丙戊酸高症(其他事项b Mock,2012年级别的4级专家认为,L-肉碱,乳olose或新霉素可以帮助先前的酸降低瓣膜诱导的高妈妈脑病(包括认知障碍和镇静)。d Chang,2011年其他考虑认知副作用 - 在文献中,多巴胺激动剂和拮抗剂是在儿童和青少年的执行功能中出现的。由于此建议不是专门用于使用情绪稳定器的建议,因此基于此建议没有提出建议。当丙戊酸的治疗因高症血症复杂时,会咨询内科医生并共同确定进一步的治疗政策。也可能在老年人中患有低藻和肾功能障碍。- 在文献中,高氨血症作为丙戊酸认知问题的可能原因(药物疗法指南针表示0.1-1%,并且:“没有肝功能障碍的高症血症很常见。”必须立即对整体进行治疗。- 如果丙戊酸出现认知问题,人们还可以想到老年人的自由群增加,因为老年人丧失了蛋白质。•一个工作组成员(RM)已经对丙戊酸自由分数增加的效果进行了案例研究:在正常镜子中具有中毒现象的老年人中,您必须确定自由组。“我们建议考虑确定那些有毒性浓度自由瓣膜的患者的自由瓣膜浓度:低alb蛋疾病,白蛋白结合位点的共同药物,意外的毒性作用,而总瓣膜浓度在治疗范围内”。
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。