摘要 - 该试验研究旨在开发一个深度学习模型,用于从SCG信号从左侧和左侧和头到英尺的方向(SCG X和SCG Y)从SCG信号沿背层方向预测地震心动图(SCG)。从15位健康的成人受试者中获得了用于培训和验证模型的数据集。使用放置在每个受试者胸部上的三轴加速度计记录SCG信号。然后使用心电图R波分割信号,并将片段降采样,归一化和焦点左右。所得数据集用于训练和验证具有两个层和一个辍学层的长期短期内存(LSTM)网络,以防止过度拟合。该网络作为SCG X和SCG Y的输入100个步骤,代表一个心脏周期,并输出了一个映射到预测目标变量的向量。结果表明,LSTM模型在背腹方向的预测和实际SCG段之间的均方根误差为0.09。该研究证明了使用从双轴加速度计获得的数据重建3轴SCG信号的潜力。索引术语 - 观察心动图,心脏振动,信号重建,深度学习,LSTM网络。
Axis Edge Vault是基于硬件的网络安全平台,可保护轴心设备。它构成了所有安全操作取决于并提供保护设备身份,保护其完整性并保护敏感信息免受未经授权访问的功能的基础。例如,Secure Boot确保设备只能使用签名的OS启动,从而防止物理供应链TAMPERING。使用签名的OS,该设备还可以在接受安装之前验证新设备软件。和安全的密钥库是用于保护安全通信的加密信息的关键建筑块(IEEE 802.1X,https,axis设备ID,访问控制键等)如果违反了恶意提取。通过常见的标准或FIPS 140认证的基于硬件的加密计算模块提供安全的密钥库和安全连接。
与我们产品的漏洞管理有关,Axis将轴安全开发模型(请参见上文第3.14节)应用于产品的生命周期。轴是根据CVE计划的既定框架,是一个授权的共同漏洞和暴露(CVE)编号(CVE)编号(CVE),并透明地披露漏洞。有关产品安全和漏洞管理的更多详细信息,请参阅www.axis.com/support/cybersecurity/vulnerability-managation and help.axis.com/axis-vulnerability-management-policy-policy
参考文献Kishita Y,Shimura Y,Kohmura M,Akita M,Imai-Okazaki U,Iyatsuka Y,Nakajima Y,Ito T,Ito T,Ohtake,Ymamama K,Ymamama K,Okazaki Y MICOS13/QIL1中的一种新型纯合差异会导致线粒体DNA depletions综合征的hepato-Gegendephalopathy。 mol Genet Genomic Med 2020; 8(10):E1 doi:10.1002/mgg3.1427参考文献Kishita Y,Shimura Y,Kohmura M,Akita M,Imai-Okazaki U,Iyatsuka Y,Nakajima Y,Ito T,Ito T,Ohtake,Ymamama K,Ymamama K,Okazaki YMICOS13/QIL1中的一种新型纯合差异会导致线粒体DNA depletions综合征的hepato-Gegendephalopathy。mol Genet Genomic Med2020; 8(10):E1doi:10.1002/mgg3.1427
药物发现和发育由一系列过程组成,从实验细胞和动物模型中的药理作用开始,并以患者的药物安全和EF CACY研究结束。主要限制通常是肝脏作为主要靶器官的不可接受的毒性水平。因此,在药物发现的早期研究肝毒性的方法是迈向理性药物开发的重要一步。过去几年已经开发了各种体外肝模型。在他们在药物开发中的使用旁边,也可以应用于研究环境毒素及其肝毒性。三种主要方法是离体分离和灌注器官模型,精确切割的肝切片和细胞培养模型。尽管整个器官灌注的优势是基于对生理参数(例如胆汁产生和形态学参数(例如组织组织学)等生理参数的评估,但细胞培养模型却可以很好地用于评估细胞代谢,细胞毒性和遗传毒性。精确切割肝切片的优点是基于细胞测定和组织形态的并置。这些模型都无法进行比较,因为它们都集中在肝毒理学的不同。在未来,测试新化合物的肝毒性的理想设置可以在细胞或切片培养物中使用过体灌注器官评估细胞效应和二级研究,以检查总体器官功能参数和组织学。
表 1. DILI 的一般分类 ................................................................................................................ 4 表 2. DILI 临床病理表型和相关药物示例 ........................................................................................ 5 表 3. DILI 严重程度分级量表 ............................................................................................................ 10 表 4. 英国全科医学研究数据库 (GPRD) 中评估肝毒性的药物 ............................................................................................. 12 表 5. 冰岛两年期间发现的 DILI 病例数 ............................................................................................. 13 表 6. 常用的标准血清肝检测 ............................................................................................................. 18 表 7. 排除 DILI 其他病因的诊断检查 ............................................................................................. 28 表 8. 临床前模型中 DILI 机制的评估 ............................................................................................. 40 图 1. eDISH 图 ............................................................................................................................. 47 图 2. 目标研究对象血清检测结果的时间过程 ............................................................................................. 47 图 3. ROC 曲线分析新兴生物标志物与肝损伤的关系 ...................................................................................... 59 表 9. IMI SAFE-T、C-Path PSTC 和 DILIN 研究的探索性肝脏安全性生物标志物 ................................................................................................................ 62 表 10. 应用于 DILI 诊断和评估的成像方法 ............................................................................................. 66 表 11. 撰写本文时正在运营的前瞻性 DILI 登记处 ............................................................................................. 75 表 12. 与癌症化疗相关的肝损伤 ............................................................................................................. 83 表 13. 新型癌症疗法及其肝毒性潜力 ............................................................................................. 86 表 14. 与肝毒性相关的植物和 HDS 产品示例 ............................................................................................. 107 附录 3,图 1. 患者 1 血清肝脏安全性生物标志物检测结果的时间过程 ............................................................................. 155 附录 3,表 1. 患者 2 入院时的实验室结果 ............................................................................................. 156 附录 3,图 2.患者 2 的 ALP 和总胆红素................................................ 157
最近的证据表明,改进的全身治疗可延长无进展生存期 (PFS) 和/或 OS。自 1990 年代以来,化疗已改善了转移性乳腺癌患者的预后 (8)。特别是从 2000 年代开始,分子靶向疗法,如抗人表皮生长因子受体 2 型 (HER2) 药物,包括曲妥珠单抗、帕妥珠单抗和 T-DM1 (9,10)、mTOR 抑制剂和 CDK4/6 联合激素疗法 (11-13)、免疫检查点抑制剂 (ICI),如人源化单克隆抗 PD-L1 抗体 (Atezolizumab) (14) 和 PARP 抑制剂,已证明对乳腺癌基因 (BRCA) 阳性 HER2 阴性转移性乳腺癌有效 (15),从而有助于改善预后。肝转移一直被认为是无法治愈的,患者的预后通常较差,因此治疗是姑息性的,目标是改善生活质量和延长生存期。
依赖细胞周期蛋白的激酶4/6抑制剂(CDK4/6IS),例如palbociclib,ribociclib和abemaciclib,已被批准用于治疗激素受体阳性和人类表皮生长因子受体受体受体2-乳腺癌2-乳腺癌的患者(Finn et al an an an an an and and and and and and and and and and and and and and and and and and and and and and and and。 Hortobagyi等人,2016年,Goetz等人,2017具有第一线转移性患者超过2年的无进展生存期(PFS),表明长期使用,评估CDK4/6IS在乳腺癌治疗中的持久安全性(Gao等,2020; Harbeck等,2021)。尽管这些药物表现出相似的临床效率,但它们的不良事件(AE)光谱明显不同(Asghar等,2015; Desnoyers等,2020; George等,2021)。为了评估CDK4/6IS的安全性,必须评估其罕见不良反应的风险,例如药物诱导的肝损伤(DILIS),其范围从轻度测试结果异常到严重的肝衰竭(David and Hamilton,2010;Bøttcher等人,2019年; Desnoyers等,2019; Desnoyers等,2020202020202020年)。尽管DILI的发生率很低,但这种疾病的严重程度令人担忧。CDK4/6IS的当前不良药物反应(ADR)数据主要来自短期临床试验和队列研究,并且可能不会捕获罕见的DILI事件(Bøttcher等,2019; Desnoyers等,2020)。因此,为准确衡量DILI风险而言,必须从现实世界设置中收集其他数据并扩展后续持续时间。自发性不利事件报告是现实世界证据的宝贵来源,是由食品和药物管理局不利事件报告系统(FAERS)等数据库促进的(Goldman,1998; Toki and Ono,2018)。不成比例的方法通常用于自动从大数据库中获取有关药物安全的信号(Montastruc等,2011)。为了确定DILI是否与CDK4/6IS相关,我们使用不成比例的分析分析了FAERS数据库。为了告知临床实践,我们比较了不同CDK4/6IS引起的肝损伤信号。对药物的探索 - 基因相互作用已经提高了我们对药物毒性的理解(Hahn and Roll,2021)。最近的研究提出了使用FAER和药物 - 基因相互作用数据的合并分析,以增强我们对不良事件的了解(AES)(Tanaka等,2021)。然而,CDK4/6I-6-i诱导的肝损伤的机制尚不清楚。为了解决这一差距,我们利用了与CDK4/6抑制剂相互作用的人类基因数据集构建了一个药物 - 基因相互作用网络和与肝损伤相关的基因。功能富集分析,以确定CDK4/6抑制剂相关肝损伤的潜在毒理学机制。