该患者是一名82岁的妇女,于2020年9月出现在疼痛诊所中,C1-C6骨折状态后C1-C6融合后(2018年4月)以及高血压,骨关节炎和充血性心力衰竭。她自2018年以来一直左臂疼痛,自2020年以来左肩痛。她描述了在左肩上燃烧的沉闷酸痛,向下伸出手臂的手臂,但患者无法描述手中的哪种手指。患者报告了相同分布的销钉和针的感觉。疼痛因运动而加剧,尤其是左肩绑架。她的初步考试是因为继发于疼痛,霍金斯和乔布的测试呈阳性的绑架缺陷以及对Speed,Hornblower和Chareheen-sion测试的侵犯。患者在2020年对左肩进行了先前的磁共振成像,确认了上张质肌腱的全厚度撕裂,Infraspinatus和Teres较小的磨损,质体软骨软骨的变薄,以及与肩croACAMACAMACAMACOMAMIAL SPROMIAL SPRES的骨骼骨骼关节的退化性疾病。在疼痛诊所进行评估之前,她已经试用了3周的物理疗法,并在包括加巴喷丁,泰诺,布洛芬和局部药物在内的多种药物进行了数种药物,没有任何药物可以缓解左肩或手臂疼痛。鉴于神经性症状和对加巴喷丁的反应不佳,她被切换为lyrica,鉴于tizanidine的处方,并被送去左上肢的肌电图(EMG),显示左上末端显示左C7 radiculopathy。鉴于EMG结果,该患者当选为C7-T1颈椎硬膜外脊髓注射(CESI),于2021年1月进行。在下次后续约会中,她报告说90%的左臂疼痛缓解了CESI持续
对于非线性光学材料作为有效的宽带Terahertz(THZ)波发电机,在THZ频率范围内具有较大透明度的低吸收器非常重要。在这项研究中,我们报告了有效的有机THZ波发电机,2-(4-羟基霉菌 - 霉菌)-1-甲基喹啉4-溴苯磺酸盐(OHQ-BBS)单晶。有趣的是,OHQ-BBS晶体在THZ频率区域的无分子振动模式范围从1.7到5.1 THz,吸收系数<20 mm-1。通过光学整流使用1300 nm波长的130 FS泵脉冲,OHQ-BBS晶体在1.2-5.5 THz的范围内生成极宽,无凹坑的THZ波。此外,还达到了从广泛使用的Znte无机晶体产生的场高20倍的THZ电场。因此,OHQ-BBS单晶是多个THZ光子应用的高度有希望的材料。
摘要:等效电路模型 (ECM) 是模拟锂离子电池行为以监控和控制它们的最常用技术。此建模工具应足够精确以确保系统的可靠性。影响 ECM 精度的两个重要参数是施加的电流速率和工作温度。如果不彻底了解这些参数对 ECM 的影响,则应在校准过程中手动进行参数估计,这是不利的。在这项工作中,开发了一种增强型 ECM,用于高功率锂离子电容器 (LiC),适用于从 −30 ◦ C 的冻结温度到 +60 ◦ C 的高温,施加的电流速率为 10 A 至 500 A。在此背景下,通过对具有两个 RC 分支的 ECM 进行建模,进行了实验测试以模拟 LiC 的行为。在这些分支中,需要两个电阻和电容 (RC) 来保持模型的精度。验证结果证明,半经验二阶 ECM 可以高精度地估计 LiC 的电气和热参数。在此背景下,当电流速率小于 150 A 时,开发的 ECM 的误差低于 3%。此外,当所需功率较高时,在 150 A 以上的电流速率下,模拟误差低于 5%。
广谱除草剂耐药性(BSHR)通常与基于新陈代谢的除草剂耐药性有关,对粮食生产构成威胁。过去的研究表明,催化性混杂酶的过表达解释了某些杂草中的BSHR。然而,BSHR表达的机制仍然很少理解。在这里,我们研究了在美国发现的BSHR晚期水草中高级抗性甲基的分子基础(echinochloa phyllopogon),在美国发现,这不能完全通过过度表达的散布性细胞色素P450单一单胶酶Cyp81a12/212/21。BSHR后期水草线迅速产生了2种不同的羟基化双洛未甲酸,其中1个是CYP81A12/21产生的主要代谢物。RNA-SEQ和随后的逆转录定量PCR(RT-QPCR)基于基于基因CYP709C69的转录连接的过表达,在BSHR线中鉴定出具有CYP81A12/21的转录连接的过表达。该基因在植物中赋予了双洛牛甲基耐药性,并在酵母(酿酒酵母)中产生了另一种羟基化的双氯氟取酸。与CYP81A12/21不同,CYP709C69没有其他除草剂 - 代谢功能,除了推测的cloma-groma Zone激活功能。在日本的另一个BSHR后期水草中也发现了3种除草剂 - 代谢基因的过表达,这表明分子水平的BSHR进化会融合。对P450基因的同义分析暗示它们位于相互独立的基因座,该基因座支持单个反元元素调节3个基因的想法。我们提出,与除草剂 - 代谢基因的转录连接的同时过度表达增强并扩大杂草中的代谢性。来自2个国家的BSHR晚期水草中复杂机制的收敛性表明,BSHR通过在晚期水草中选择保守的基因调节系统而发展。
1.概述在实现易于宽松的通用通用量子计算机方面面临的硬件挑战之一是,要实现错误校正的代码需要大量的物理量子,并且对于超导量子的代码,据说该数字是巨大的(10 8)(10 8)(典型的误差率(〜0.1%),将造成QUIND(〜0.1%)。通过研究错误的原因并根据这项研究开发高质量的Qubit制造技术来避免错误通用量子计算机。此外,由于当前的制造方法(电子束暴露和倾斜沉积方法)在生产率和量子均匀性方面对未来的大型电路提出了挑战,因此我们将使用光学曝光和堆叠过程开发Qubit Gruncation技术。我们还将对玻色粒代码进行探索性研究,该研究有望与当前主流表面代码相比,具有较少的物理Qubits的抗误量计算,以识别可能性和有希望的方案。我们还将对核代码进行探索性研究,该研究有望与当前主流表面代码相比,具有较少的物理QUBIT的抗错量子计算,以识别可能性和有希望的方案。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
图3给出了背包A、B、C各自背负30秒时重心的总体轨迹。结果发现,书包C的摇摆距离明显小于书包A和B。 从上述结果可以看出,采用“弹性加强材料”和“立体缝制”相结合的肩带,可以有效打造出让孩子在背着书包时也能保持稳定姿势的书包。 对于书包的摆动,将“书包侧边的加速度”减去“人体侧边的加速度”,并比较积分的绝对值。运行过程中振动的结果如图4所示。结果发现,书包A与书包B、C在“左右晃动”和“上下晃动”方面均存在明显差异。在“前后摇晃”方面,书包B的摇晃程度最小,而书包A的摇晃程度最大。 从以上结果可以认为,弹性加固材料对于减少行走或跑步时书包的晃动是有效的。研究还发现,3D肩带对减少振动的作用很小。 从以上结果可知,含有弹性加强材料的肩带无论在“直立”姿势下还是在“行走/跑步”姿势下,均能有效减轻身体的负荷。此外,还发现,三维缝合肩带可以保持更稳定的姿势。
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
2019年12月1日收到的手稿;修订了2020年2月26日和2020年4月19日; 2020年6月8日接受。出版日期,2020年6月30日;当前版本的日期,2021年3月19日。根据Grant TZ-94,国家研究大学高等教育学院的基础研究计划为这项工作提供了支持;俄罗斯基础研究基金会的一部分是赠款18-07-00898;部分由RFBR和NSFC在项目20-57-53004下。本文由副编辑N. Wong推荐。(通讯作者:Konstantin O.石化。)Konstantin O. Petrosyants and Lev M. Sambursky are with the National Research University “Higher School of Economics,” Moscow Institute of Electronics and Mathematics, Moscow 101000, Russia, and also with the Institute for Design Problems in Microelectronics, Russian Academy of Sciences, Moscow 124365, Russia (e-mail: kpetrosyants@hse.ru).Maxim V. Kozhukhov,Mamed R. Ismail-Zade和Igor A. Kharitonov在莫斯科电子和数学研究所,莫斯科101000,俄罗斯,莫斯科电子和数学研究所。bo li是在中国科学院的微电子学研究所,中国北京100029。数字对象标识10.1109/tcad.2020.3006044
§ 量子效率有限(无雪崩倍增)§ 读出噪声(电路噪声)限制了最低可检测信号§ 积分时间长