通过环化增强的肽链的效力、特异性和安全性范围已经证明了环肽的基本特征。在 4 60 种 FDA 和 EMA 批准的肽中,2 三分之二为环状形式,在现代制药行业中发挥着重要作用。3 环化引入的约束使肽链在构象上更稳定,这提高了靶蛋白结合亲和力,并由于替代构象较少而减少了非特异性结合。4 构象灵活性降低降低了分子适合蛋白酶催化位点的机会,蛋白质组学抗性得到改善。5 环化还通过形成更大的相互作用表面来增加肽链的功效,以介入蛋白质-蛋白质相互作用。6 总体而言,肽链环化导致环肽与线性肽本质上不同。7,8
图1:使用在线UV模块收集的分析数据可实现数据驱动的方法进行合成分析。a)AFPS可以精确监测反应动力学,这与序列的聚集有关。b)在线紫外线痕迹中的聚集被特征在于脱落峰的扩大。聚集通过以下公式计算的聚合因子来量化:AF = WN - HN。wn:最大高度的一半,正常为第一个峰,wn:峰高到第一个峰。如果AF> 20,则将序列视为汇总。c)聚集是由生长的肽链之间的β-呈驱动的。d)利用合成过程中收集的在线紫外线数据,以预测聚集的发生和单个氨基酸的贡献。
特异性和注释它识别为65-76KDA的蛋白质,该蛋白质被鉴定出抗促胰蛋白酶(AACT)。AACT是在肝脏中合成的血浆蛋白酶抑制剂作为单个糖肽链。在人类中,正常的AACT血清水平约为十分之一?1-抗胰蛋白酶(AAT),它具有核酸和蛋白质序列同源性。两者都是主要的急性相应物;它们在血浆中的浓度增加了创伤,手术和感染。在AD患者的脑脊液和血浆中,AACT水平的升高是广泛但不是普遍报道的。前列腺特异性抗原(PSA)及其具有AACT的SDS稳定复合物已广泛用作诊断前列腺癌的标志物。ACT缺乏也可能是慢性肝病的可能原因。a肌肉与组织细胞和组织细胞肿瘤反应。它被广泛用于鉴定从中得出的组织细胞和肿瘤。胰腺和唾液腺的腺泡肿瘤也可能表现出ACT阳性。
特异性和注释它识别为65-76KDA的蛋白质,该蛋白质被鉴定出抗促胰蛋白酶(AACT)。AACT是在肝脏中合成的血浆蛋白酶抑制剂作为单个糖肽链。在人类中,正常的AACT血清水平约为十分之一?1-抗胰蛋白酶(AAT),它具有核酸和蛋白质序列同源性。两者都是主要的急性相应物;它们在血浆中的浓度增加了创伤,手术和感染。在AD患者的脑脊液和血浆中,AACT水平的升高是广泛但不是普遍报道的。前列腺特异性抗原(PSA)及其具有AACT的SDS稳定复合物已广泛用作诊断前列腺癌的标志物。ACT缺乏也可能是慢性肝病的可能原因。a肌肉与组织细胞和组织细胞肿瘤反应。它被广泛用于鉴定从中得出的组织细胞和肿瘤。胰腺和唾液腺的腺泡肿瘤也可能表现出ACT阳性。
Edman降解是通过从肽链的氨基端依次去除一个残基来纯化蛋白质的过程。为解决通过水解条件损害蛋白质的问题,Pehr Edman创造了一种新的标记和切割肽的方法。埃德曼(Edman)想到了一次仅删除一个残留物的方法,这并没有损害整体测序。这是通过添加异硫氰酸苯基苯基苯基苯基苯基苯基苯甲酸苯基苯基苯甲酸苯甲酸苯甲酸苯甲酰胺的衍生物来完成的。然后在不太苛刻的酸性条件下裂解N末端,从而产生苯基噻吩家(PTH) - 氨基酸的环状化合物。可以重复其余残基的方法,一次将一个残基分开。Edman降解非常有用,因为它不会损害蛋白质并允许在更少的时间内对蛋白质进行测序。
肽是通过酰胺键连接的氨基酸单位形成的短寡聚物。7它们是蛋白质的重要组成部分,也是生物结构和功能的因果因素。由于它们与组织,细胞和其他生物成分的良好兼容性,肽具有令人难以置信的生物能力和可生物降解,从而增加了它们在生物医学应用方面的优势。8改变氨基酸侧链的能力可以精确调整肽的二级和第三级结构。这种修改可导致细胞渗透增加,有效载荷保留增加或自组装功能。这些二级结构(包括A螺旋和B表格)也可能引起肽链之间的相互作用。9次级结构的相互作用会导致形成纳米结构的肽,例如纳米晶状体和胶束,从而可以增加细胞的细胞和较大的表面积,从而促进药物和成像剂的结合。此外,可以在某些条件下触发这些肽的形成,从而允许extible和控制。基于肽的材料已被开发为用于治疗疾病的独特而有前途的工具。它们具有多种活性,包括药物输送,传感,细胞靶向,组织的深度渗透以及免疫反应,以增强抗肿瘤治疗的影响。10 - 12
3 10-螺旋代表了第三大丰富的二级结构蛋白。虽然可以理解地被α-螺旋壳掩盖了数十年,但3 10-螺旋结构正在缓慢恢复蛋白质科学中的某些相关性。在过去的十年中,报告中强调了这种二级结构在生物过程中的关键作用。此外,3个10-螺旋被认为是蛋白质折叠中的关键中间体,以及天然发生的peptaibols抗菌活性的关键结构。因此,很明显,在仿生材料领域考虑3 10螺旋是相关的脚手架。在这种情况下,本综述涵盖了从掺入受约束氨基酸到固定方法的肽链中稳定3个10-螺旋结构的策略。在最后一节中,讨论了对生物活性化合物的发展,对映选择性反应的催化剂,超分子受体和膜上包含的信号传感器的催化剂的使用。目前的工作旨在强调化学生物学和蛋白质科学中3个10螺旋的相关性,有时被低估的相关性,提供了开发具有广泛潜在应用的功能性仿生学的工具。
1。一般性血红蛋白分子(Hb)是四个相同的多肽链组成的四聚体。- 由两个α链和两个β2β2(α2β2)组成的HBA几乎代表几乎所有成年血红蛋白(95.5至97%)。- 由两个α链和两个三角链(α2Δ2)组成的HBA2,代表成人血红蛋白的2%至3.5%。- 由两个α链和2个伽马链(α2γ2)组成的HBF或胎儿,代表成人血红蛋白的1%。血红蛋白病是遗传性疾病,其中存在血红蛋白的遗传性异常。它们分为两组: - 以全球链结构异常为特征的血红蛋白组,这是一个以一种或多种血红蛋白多多肽链的不足为特征的thalassemias。某些被称为的复合病理学一次属于两组。在thalassemias中,血红蛋白异常是抑制血红蛋白某些多肽链的合成。然后出现了一种补偿机制,试图通过增加对其他多肽链的阐述来补偿合成不足。当干扰影响α链时,只能通过四聚体出现到单一类型的通道中来完成补偿机制:β4结构的血红蛋白H和伽马4的BART结构血红蛋白是正常受试者中不存在的血红蛋白的结构血红蛋白,因为它们是立即致死的。当合成的减少影响β链时,补偿机制基于伽马和三角洲链的生产增加,因此血红蛋白F和A2的比例增加。多种链链合成的定量异常导致血肿的改变,通过: - t-thalassémias中alpha无链链的 - 全细性降水, - β4和gamma 4的降水(在A- thalassem中,β4和Gamma 4(这是不稳定的互动)。地中海贫血的特征包括:α /β球蛋白链中的失衡,无效的红细胞生成,慢性溶血性贫血,补偿性造血性造血性膨胀,高凝性和增加的肠道铁的吸收。表I中总结了不同形式的Thalassemias的主要特征。
生物技术及其各种应用是12类生物学课程的关键部分。学生可以在提供的链接上访问该主题的详细说明,练习论文和研究材料。这些注释涵盖了与生物技术及其在农业和医学中的应用有关的关键概念,定义,实例和重要点。这些笔记旨在帮助学生更好地了解该主题,并为JEE,NEET,UPSC等竞争性考试做准备。关于生物技术及其应用的12类生物学注释可以下载为PDF文件,以供将来参考。The education boards covered by these notes include CBSE, CISCE, AHSEC, CHSE Odisha, CGBSE, HBSE, HPBOSE, PUE Karnataka, MSBSHSE, PSEB, RBSE, TBSE, UPMSP, UBSE, BIEAP, BSEB, GBSHSE, GSEB, JAC, JKBOSE, KBPE, MBOSE, MBSE, MPBSE,NBSE,DGE TN,TSBIE,COHSEM,WBCHSE。学生还可以访问12类生物学生物技术及其应用的NCERT解决方案,以获取所有答案。解决方案包含解决所有问题的问题,答案和步骤。这些笔记与印度的所有董事会有关,可以用作竞争性考试的研究材料。涉及生物制药和生物学的工业规模生产。应用包括治疗学,诊断,遗传改性的农作物,加工食品,生物修复,废物处理和能源生产。三个关键的研究领域是:(i)作为催化剂(通常是微生物或纯酶)发展的改善生物。(ii)催化剂作用的工程师最佳条件。(b)有机农业。(iii)下游加工技术以净化蛋白质/有机化合物。农业中的生物技术应用涉及三种选择:(a)基于农业化学的农业。(c)基于作物的基于基因的农业。绿色革命增加了由于改善农作物品种,农业化学和更好的管理实践而增加的粮食生产。植物中的遗传修饰已导致农作物变得越来越耐受性胁迫,减少对化学农药的依赖,收获后损失减少以及矿物质使用效率提高。某些应用包括耐药植物的生产,从而减少农药的使用。bt毒素是由细菌产生的,并在植物中表达以提供对昆虫的抗性,从而产生了诸如BT棉,Bt玉米,金米,番茄,土豆和大豆等生物农药。bt棉是使用苏云金芽孢杆菌(BT)的菌株创建的。该细菌会产生杀死某些昆虫的蛋白质。毒素作为非活性素毒素存在,但在昆虫的肠道中变得活跃,导致细胞肿胀和裂解导致死亡。特定的BT毒素基因是从苏云金芽孢杆菌中分离出来的,并将其掺入棉花等几种作物植物中。大多数BT毒素是特定于昆虫组的。使用生物技术过程开发了耐虫害的植物。例如,RNA干扰(RNAi)用于针对感染烟草植物的线虫,从而减少产量。在此处给出的文字:由于补充DSRNA而导致特定mRNA的沉默。4。I.II。 iii。II。iii。它发生在所有真核生物中,是一种细胞防御的方法。(c)dsRNA结合并防止mRNA的翻译(沉默)。(d)该互补RNA的来源可能来自具有RNA基因组或移动遗传元件(转座子)的病毒感染,这些病毒通过RNA中间体复制。(E)农业载体用于将线虫特异性基因引入宿主植物。它在宿主细胞中同时产生感官和抗沉思RNA。(f)这两个RNA相互互补并形成双链RNA(dsRNA),该RNA(dsRNA)启动RNAi并因此使线虫的特定mRNA保持沉默。(g)寄生虫无法在转基因宿主中生存,表达特定的干扰RNA。因此,转基因植物受到寄生虫的保护。在医学中的生物技术应用,通过实现大规模生产安全,更有效的治疗药物,对医疗保健领域产生了巨大影响。(a)重组治疗剂不会像从非人类来源分离出的类似产品那样诱导不必要的免疫反应。(b)目前,已批准了大约30种重组治疗剂在世界范围内使用人类。在印度,目前有12个正在销售。基因设计的胰岛素可导致足够的胰岛素可用于管理成人发作的糖尿病。(a)用于糖尿病的胰岛素较早从屠宰的牛和猪的胰腺中提取。这引起了某些患者过敏或其他反应。(b)胰岛素由两个短多肽链组成,即链-A和B,由二硫键桥连接在一起。在哺乳动物中促胰岛素成熟为胰岛素(简化)(c),胰岛素被合成为激素(需要在它变成完全成熟和功能性激素之前对其进行处理),其中包含一种称为C肽的额外拉伸。(d)成熟胰岛素中不存在C肽,并在成熟成胰岛素中去除。因此,使用rDNA技术生产胰岛素的主要挑战是将胰岛素组装成成熟的形式。(e)1983年的美国公司Eli Lilly,准备了与人类胰岛素A和B链相对应的两个DNA序列,并将它们引入大肠杆菌的质粒中以产生胰岛素链。链A和B分别产生,通过产生二硫键以形成人类胰岛素来提取和组合。通过基因工程生产疫苗这种疫苗称为重组疫苗,也称为“亚基疫苗”或“第二代疫苗”,例如乙型肝炎。这是两种类型:(a)蛋白质疫苗对疫苗中rDNA产生的特定蛋白质的使用。(b)使用基因工程DNA的DNA疫苗被注射为疫苗,以产生免疫反应。肝炎疫苗含有病毒包膜蛋白,乙型肝炎表面抗原(HB8 AG)。该基因是从酵母载体中分离出来的。从病原体中分离出的一些蛋白质编码基因也被掺入并在植物中表达产生抗原,也称为可食用疫苗。基因疗法是一种允许在儿童或胚胎中诊断的基因缺陷的方法集合。(a)基因被插入人的细胞和组织以治疗疾病。(b)遗传缺陷的纠正涉及将正常基因递送到基因疗法中,并进行疾病治疗的分子诊断和早期检测•基因治疗已用于治疗一个四岁的腺苷脱氨酶(ADA)缺乏症的女孩,这是1990年代的首次使用。ADA缺乏是由腺苷脱氨酶的基因缺失引起的。通过破坏线虫特异性RNA,使植物免受线虫的侵害。这个想法是将这项技术应用于基因工程胰岛素的生产。在糖尿病病例中,个体不会产生适当的胰岛素,导致血糖水平升高。获取胰岛素的传统方法涉及从诸如cattles和猪等动物中提取胰岛素,但是这些有缺点,例如过敏反应以及疾病转移到人类的风险。胰岛素以一种称为胰岛素的非活性形式释放,该胰岛素具有三个多肽链-a,b和C。通过成熟,这变得活跃,失去了额外的C-溶肽链。首次通过为人类成熟胰岛素的多肽链A和B制备DNA序列,首次使用rDNA技术产生胰岛素。基因治疗是另一种旨在通过向患者提供有缺陷基因的副本来治愈遗传遗传疾病的应用。它涉及诸如骨髓移植,酶替代疗法或将功能基因引入细胞之类的方法。第一种临床基因治疗是用于ADA缺乏症,影响嘌呤代谢。这涉及将功能性ADA cDNA引入淋巴细胞中,然后将其返回给患者。分子诊断对于早期疾病诊断和治疗至关重要。这涉及使用各种方法(例如血清测试)在早期识别疾病。早期发现HIV,癌症等疾病对于有效治疗至关重要。 但是,但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。 这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。 印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。 但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。早期发现HIV,癌症等疾病对于有效治疗至关重要。但是,诸如尿液分析之类的常规方法不提供预警信号。免疫吸收测定法(ELISA) - 通过抗原抗体反应检测病原体的存在。转基因动物是通过将外源基因引入其DNA中产生的。这些动物用于:▪研究正常的生理学和发育▪建模人类疾病,例如癌症,囊性纤维化和阿尔茨海默氏症■生产生物学产品,例如α-1-抗抗蛋白酶(如α-1-抗抗肽),人蛋白质增强的牛奶,等等。例如geac。印度的工程批准委员会规定使用转基因(GM)生物用于公共服务,以确保其安全。但是,对食物和医学来源的生物的修改和使用引起了人们对专利赠款的关注。公司已获得使用遗传材料,植物和生物资源的产品和技术专利,这些产品长期以来一直使用农民和土著人民。专利通常授予一定期限的发明权,不包括其他人未经许可使用或出售发明。印度政府允许像美国这样的公司获得专利的GM稻米品种,例如Basmati Rice,尽管它来自现有的印度农民的品种。这引发了关于知识产权和传统知识所有权的争议。此外,跨国公司已被指控生物流产,这涉及未经授权使用的生物资源和传统知识,而没有赔偿性付款。这些国家拥有丰富的生物多样性和传统知识,而工业国家通常在财务上富有,但缺乏这些资源。为了解决这个问题,一些国家已经制定了法律,以防止其生物资源和传统知识的开采。
弗朗西斯·克里克(Francis Crick)的分子生物学基本原理包括序列假设和中央教条。序列假说描述了核酸和蛋白质之间如何转移序列信息。中央教条概述了遗传信息从DNA到RNA,然后概述了蛋白质,并指出一旦该信息达到蛋白质水平,就无法检索。近年来,合成生物学对这些原则提出了挑战,提出了有关潜在违反中心教条的问题。为了解决这些问题,研究人员在蛋白质合成中的信息传递和CRISPR基因编辑之间取得了相似之处。将三部分评估方案应用于CRISPR/CAS9和CRISPR Prime编辑系统。虽然信息传递保持在中央教条的范围内,但潜在的机制表明,通过合成生物学违反了这一原理的潜在途径。这引发了人们对蛋白质衍生的信息转移系统的理论和实际意义的猜测。此外,还有一项为入门生物学学生设计的教育活动,该活动使用诸如乙烯基记录等非生物学示例来探索中心教条。学生检查真核细胞中的遗传信息流,并探索逆转录病毒感染和伤口愈合等生物学条件,从而改变了这种流动。这个主题对于对医学,医疗保健和生物医学研究感兴趣的学生至关重要,因为遗传信息流的变化可能导致疾病状态。但是,这种简化不会捕获其原始含义。分子生物学的中心教条围绕着生物系统中的遗传信息流动,通常总结为“ DNA生成RNA,RNA产生蛋白质”。弗朗西斯·克里克(Francis Crick)在1957年介绍了这一概念,在1970年重申了这一概念:“分子生物学的中心教条涉及顺序信息的详细残基传递。它指出,这种信息不能从蛋白质转移到蛋白质或核酸。”更受欢迎但不正确的版本是简单的DNA→RNA→蛋白质途径,归因于詹姆斯·沃森(James Watson)。这个两步过程与Crick的原始声明不同,该声明今天仍然有效。包含DNA,RNA和蛋白质的生物聚合物是线性聚合物,每个单体最多都连接到其他两个。他们的序列有效地编码信息,并在分子之间发生忠实的,确定性的转移。当DNA转录为RNA时,它的补充对与它。DNA代码A,G,T和C分别转移到RNA代码A,G,U和C上。蛋白质的编码是使用人类和哺乳动物的标准密码子表中的三组,称为密码子。但是,有些生命形式使用不同的翻译。信息传递的基本步骤是从DNA到DNA的复制,必须为后代细胞提供遗传物质。复杂的蛋白质组重新组合执行此复制过程。转录是将DNA信息复制到mRNA中的过程。!!!可以发生替代剪接,从而增加蛋白质多样性。酶,例如RNA聚合酶和转录因子,促进了真核细胞的过程,包括剪接和翻译进行处理。转录过程始于在前mRNA中添加5'帽和poly-a尾巴,然后进行剪接。成熟的mRNA然后向核糖体传播进行翻译。在原核生物中,转录和翻译是连接的,而在真核生物中,它们通过mRNA从核从核转移到细胞质的转运而分开。翻译涉及通过核糖体读取mRNA密码子,将氨基酰基的TRNA匹配到抗代码,并将氨基酸连接到生长的肽链中。链条开始折叠成正确的构象,最终蛋白质出现所需的其他处理。翻译以终止密码子结束,但是mRNA不包含指定成熟蛋白质所需的所有信息。处理对于正确折叠至关重要,通常涉及伴侣蛋白以及多肽链的剪接或分裂。某些蛋白质需要交联,辅因子附着或去除内部。新霉素可以增强从其他生物体分离的单链DNA模板中合成蛋白质。但是,目前尚不清楚这种翻译机制是否针对遗传密码。翻译蛋白氨基酸序列后,可以通过酶编辑它们,该过程未被中央教条明确覆盖。没有太多明确的例子,蛋白质修饰和遗传学的相关概念彼此之间有很大关系。例子包括一些抗生素。某些蛋白质是由非核糖体肽合成酶合成的,这些蛋白质可以是专门合成一种类型的肽的复杂蛋白质。这些肽通常具有环状和/或分支结构,并且可以含有非蛋白酶氨基酸,从而将其与核糖体合成蛋白区分开。inteins是蛋白质的“寄生”片段,可以从氨基酸链中从核糖体出来并用肽键重新加入其余部分。此过程改变了蛋白质的主要序列,使其可以直接编辑DNA序列并增加其可遗传的繁殖。表观遗传学是指可以显着改变基因表达水平的DNA甲基化状态的变化。当信息状态的变化不会因体细胞突变而改变时,这种表观遗传变化被认为是可遗传的。prion是具有特定氨基酸序列的蛋白质和构象,它们通过在蛋白质的其他蛋白质分子中以相同的序列但不同的构象进行构象变化来传播自身。一旦蛋白质转换,它就可以将信息传达到新的细胞中,并将该序列的更多功能分子重新配置为替代prion形式。一些科学家认为,prion介导的遗传违反了分子生物学的核心教条。prion假说与分子生物学的核心教条矛盾,该序列指出DNA序列编码蛋白质信息。詹姆斯·夏皮罗(James A.相反,它提出蛋白质可以包含其自己的遗传信息,影响其生物学功能,并可能被传递给其他分子。但是,他的批评家不相信他对克里克最初意图的解释。弗朗西斯·克里克(Francis Crick)在自传中写道,他选择“中央教条”一词,并指出他想强调其重要性和力量。后来他意识到,使用“教条”一词造成的麻烦远远超出了价值,因为它暗示了一种信念,这是无法怀疑的。Crick将该术语用作口号,但并未完全理解其正确的含义。中央教条的概念早于发现DNA的作用和结构。八月魏斯曼的种植血浆理论提出,遗传信息仅从种系细胞转向体细胞,预测了以基因为中心的生命观点,而无需直接解决分子生物学。分子生物学的中心教条,这是弗朗西斯·克里克(Francis Crick)在1950年代创造的概念,概述了遗传信息从DNA到蛋白质的流动。根据此框架,遗传信息存储在DNA分子中,并转录为RNA,然后将其转化为蛋白质。然而,随着研究人员继续探索细胞过程的复杂性,他们开始质疑中央教条的简单性。尤其是,prions的发现 - 可以改变基因表达的传染性蛋白质颗粒 - 挑战了遗传信息无法从蛋白质向后流向DNA的观念。在这种情况下,必须重新评估中心教条在现代生物学中的相关性至关重要。最近的研究进一步模糊了传统的中央教条与非编码RNA介导的基因调节的概念之间的界限。后者表明,非编码RNA可以通过充当分子“海绵”或直接与染色质重塑复合物相互作用来影响基因表达。一些科学家认为,应扩展中央教条,以包括非编码RNA的作用以及允许蛋白质影响基因表达的反馈机制。