关于该项目的途径联盟(加拿大自然资源,cenovus,conocophillips,帝国石油,梅格能源,阳光能源)提议在艾伯塔省东北部建立一个庞大的碳捕获和存储(CCS)网络。该项目将是加拿大最大的项目 - 世界上最大的项目之一。公司提议从麦克默里堡地区捕获13个油砂设施(最终达到20)的二氧化碳,将其通过超过600公里的管道运输到冷湖区,将二氧化碳将通过16-19 Injections通过16-19注射井注入巨大的地下储藏室。虽然途径联盟尚未指定其打算注入二氧化碳的确切土地,但该省的艾伯塔省政府碳封存地图表明,CNRL(代表途径代表该项目)具有大约18,000 km2的评估许可。支持者声称该项目将从13个途径联盟成员的油砂设施中永久存储约100-1200万吨二氧化碳(MT)。,这些设施每年发射约40吨Co 2。油砂的年度排放量在2022年为86吨,自1990年以来增长了467%。公司希望该项目将于2030年完成,该项目的预期寿命约为50年。但是,所涉及的公司尚未制作
使用四分位距而不是平均数和标准差,因为这些统计数据受异常值的影响较小,更能反映提出索赔的个人的平均典型经历。异常值是数据集内与数据集其余部分似乎不一致的观测值。• 中位数是数据集从小到大排列时中心的值。• 四分位数是将排序(从最小值到最大值)的数据集分成四个相等部分的三个值(第一/下四分位数、第二四分位数(中位数)、第三/上四分位数)中的任何一个。下四分位数(LQ)是数据集中 25% 的值低于此点的值。上四分位数(UQ)是数据集中 75% 的值低于此点的值。• 四分位距(IQR)是中间 50% 的数据点所在的范围(即下四分位数和上四分位数之间的距离)。四分位数间距越长,数据分布越广。47. 请注意,补充表中还显示了平均值,因为这是
首相致辞 4 陛下向议会两院发表的隆重演讲 7 经济稳定与增长 11 预算责任法案 11 国家财富基金法案 12 养老金计划法案 14 规划与基础设施法案 17 就业权利法案 20 英国权力下放法案 23 客运铁路服务(公有制)法案 26 更好的巴士法案 28 铁路法案 30 银行处置(资本重组)法案 33 仲裁法案 34 产品安全与计量法案 37 数字信息与智能数据法案 39 高速铁路(克鲁至曼彻斯特)法案 42 审计改革与公司治理法案草案 44 英国能源和清洁能源超级大国 46 英国能源法案 46 英国皇家地产法案 48 可持续航空燃料(收入支持机制) 法案 50 水 (特别措施) 法案 52 边境安全、打击反社会行为、夺回我们的街道 54 边境安全、庇护和移民法案 54 犯罪和警务法案 56 恐怖主义 (场所保护) 法案 59 受害者、法院和公众保护法案 61 打破机会障碍 63 儿童福利法案 63 英格兰技能法案 66 租户权利法案 68 足球治理法案 71 租赁和共同持有改革法案草案 74 平等 (种族和残疾) 法案草案 77 转换实践法案草案 79 健康 81 烟草和电子烟法案 81 精神健康法案 83 国家安全和服务国家 86 希尔斯堡法律86 武装部队专员法案 88 北爱尔兰遗留立法 90
在第 115 届和第 116 届国会期间,联邦政府针对 AI 的活动加速进行。唐纳德·特朗普总统发布了两项行政命令,建立了美国 AI 计划 (E.O.13859) 并推动在联邦政府中使用可信赖的 AI (E.O.13960)。联邦委员会、工作组和其他实体已经成立,以协调机构活动、帮助确定优先事项并制定国家战略计划和报告,包括更新的国家 AI 研究与发展战略计划和联邦参与制定 AI 技术标准和相关工具的计划。在国会,委员会举行了多次听证会,议员们提出了各种各样的立法来解决联邦 AI 投资及其协调;与 AI 相关的问题,例如算法偏见和劳动力影响;以及面部识别和深度伪造等 AI 技术。第 116 届国会颁布的至少四项法律重点关注人工智能或包含以人工智能为重点的条款。
政策概述于2020年10月13日,美国与其他七个国家通过了Artemis协定。从那以后,签署人的数量已增长到32个州。非约束协议的签署人同意遵守现有的太空法条约,并在太空探索和商业活动中建立新的可持续性原则。但是,有针对协议的批评,因为它是在联合国国际条约框架以外采用的,并被称为以美国为中心。此外,关于如何与《外层空间条约》的非批准规定一起阅读文档的问题仍然存在。Artemis Accord做出了必要的尝试,以澄清和创建迫在眉睫的空间活动的框架,但也导致了更多问题。
文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
摘要 更直接、更高分辨率和更大数量地收集脑数据的可能性加剧了人们对精神和脑隐私的担忧。为了管理这些隐私挑战给个人带来的风险,一些人建议编纂新的隐私权,包括“精神隐私”权。在本文中,我们考虑了这些论点并得出结论:虽然神经技术确实引发了重大的隐私问题,但这些问题——至少就目前而言——与其他众所周知的数据收集技术(如基因测序工具和在线监控)引起的问题没有什么不同。为了更好地理解脑数据的隐私风险,我们建议使用信息伦理中的概念框架,即海伦·尼森鲍姆的“情境完整性”理论。为了说明情境的重要性,我们在三个熟悉的情境——医疗保健和医学研究、刑事司法和消费者营销——中研究了神经技术及其产生的信息流。我们认为,强调脑隐私问题的独特之处,而不是与其他数据隐私问题的共同点,可能会削弱制定更强有力的隐私法和政策的更广泛努力。
• 第 2 部分:WPS 索赔清算时间。本部分提供有关伤残抚恤金索赔、战争寡妇/鳏夫索赔和上诉的平均(中位数)清算时间的信息(表 3 至 6)。本公报按财政年度呈现了随时间变化的趋势。提供此信息是为了提供索赔人等待对其索赔或上诉结果作出决定的平均时间。• 第 3 部分:根据 WPS 清算的索赔结果。本部分提供有关所有索赔类型结果的信息(表 7 至 13)。一旦得出结果,已注册的索赔即被清算。提供此信息是为了显示与服务相关的索赔比例。• 第 4 节:当前战争抚恤金领取者。本节提供有关战争抚恤金领取者人数的信息,并按财政年度列出随时间变化的趋势。截至 2022 年 3 月 31 日,为领取战争抚恤金的人员提供更多信息,包括人口统计和残疾程度(表 14 至 20)。• 第 5 节:致残原因。本节提供有关因持续的外部公共利益而领取精神障碍战争抚恤金的残疾抚恤金领取者人数的信息(表 21)。本节还介绍了一次性奖励的数量和间皮瘤支出(表 21a)。• 第 6 节:WPS 下的补充津贴领取者。本节提供有关正在接受持续补充补助的人数的信息
我是一名科学家。我帮助开创了量子计算和现代开放科学运动。我对人工智能也有浓厚的兴趣。所有这些都是我对帮助人们发现和创造的系统和工具的更广泛兴趣的一部分,无论是个人还是集体。我对量子计算的兴趣始于 1992 年。我在这个领域最为人所知的身份可能是与 Ike Chuang (麻省理工学院) 合著的《量子计算标准文本》。这是过去 30 年物理学中被引用次数最多的著作,也是物理学史上被引用次数最多的十部著作之一(基于截至 2015 年左右的 Google Scholar 数据)。我对量子计算方面的三项研究贡献特别感到自豪:(1) 控制纠缠量子态操纵的基本定理;这引发了人们对主要化数学及其与量子力学的关系的广泛兴趣;(2) 将量子计算重新表述为一种在非常高维弯曲空间中的测地线运动;这项工作目前正在接受量子引力研究人员的深入研究,他们利用它来理解黑洞; (3) 发现和早期开发量子计算的光簇状态方法,目前由 PsiQuantum 公司研究(最新一轮融资额约为 2.3 亿美元)。其他贡献包括参与开发量子门隐形传态、量子过程层析成像(用于实验性地表征量子门)以及最早的量子隐形传态实验之一,该实验被《科学》杂志评为 1998 年度十大突破之一。作为这项工作的一部分,我与他人共同创立并指导了量子信息科学计划,担任昆士兰大学量子信息科学基础教授。当时,它是南半球最大的以理论为重点的量子计算小组,也是世界上最大的量子计算小组之一,成员人数不断增加,目前大约有 30 人(教师、博士后、学生)。更广泛地说,通过招聘、指导和会议,我帮助澳大利亚发展成为世界领先的量子计算国家之一。虽然量子计算通常被认为是一种有前途的技术,但这并不是激发我兴趣的原因。我对计算机很着迷,因为它是一种表示和运用知识的手段,可以执行我们称之为人类认知的过程。量子计算机强烈地挑战我们去理解这些过程的根本限制。从历史上看,另一条研究路线也探讨了同样的问题,尽管角度截然不同。在 20 世纪 60 年代和 70 年代,道格拉斯·恩格尔巴特 (Douglas Engelbart)、伊万·萨瑟兰 (Ivan Sutherland) 和艾伦·凯 (Alan Kay) 等早期的计算研究人员开始将计算机设想为增强人类认知的工具。他们开发了许多最强大的想法,这些想法构成了现代用户界面的基础,这些工具扩展了人类的创造力和发现能力。受这些想法的启发,在 20 世纪 90 年代,我对互联网的承诺感到兴奋,它有助于改变科学研究的方式——通过新的工具进行协作,共享数据、代码和想法,以新的方式创造意义。我看到这个承诺在开源编程社区内迅速实现。但很明显,许多障碍阻碍了科学界的这一目标。科学已经开发了一些强大的知识共享系统和规范(例如期刊文章),但也有许多系统在关键方面(例如数据、软件和工具,以及在发现中往往至关重要的隐性知识)对共享的激励作用较弱或完全不鼓励共享。
超过20%的美国成年人患有精神障碍,其中许多人具有耐药性或继续出现症状。需要其他方法来改善精神保健,包括预防。微生物组的作用已成为精神和身体健康及其相互联系(幸福感)的中心宗旨。在正常条件下,健康的微生物组通过维持肠道和脑屏障完整性来促进宿主体内的体内平衡,从而促进宿主的幸福感。由于微生物组和神经内分泌 - 免疫系统之间的多向串扰,微生物组内的营养不良是免疫介导的系统性和神经炎症的主要驱动力,可以促进疾病进展,并且对疾病的进展且对良好的健康和精神健康有害。在诱发的个体中,免疫失调可以转移到自身免疫性,尤其是在身体或心理触发因素的情况下。慢性应激反应涉及免疫系统,该系统与肠道微生物组密切相关,尤其是在免疫教育过程中。此互连形成微生物群 - 免疫脑轴,并促进心理健康或疾病。在这篇简短的综述中,我们的目的是强调压力,心理健康和肠道微生物组之间的关系,以及营养不良和免疫系统失调的方式可以转移到自身免疫反应以及同时的神经心理学后果,并在微生物群的上下文中伴随着神经心理影响。最后,我们旨在审查基于经验的预防策略和潜在的治疗靶标。