从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
胆固醇液晶(CLC)相。[1] CLC相的最引人注目的特征是由于光的选择性反射,其异常的光旋转功率和结构颜色。[2]结构颜色是光干扰现象的结果,例如由周期性纳米结构引起的Bragg反射和棒状分子的平均折射率。CLC的初始缺口位置可以通过公式λ0= n×p 0表示,其中λ0是初始缺口位置,n是平均折射率,P 0是初始音高长度。[3]自然采用了这种螺旋纳米结构,向花瓣,蝴蝶翅和甲虫的表皮提供各种颜色信息。[4]灵感来自此类天然光子纳米结构,许多研究人员使用光子晶体,等离子体纳米结构和元素制造人造结构颜色。[5]这些天然螺旋纳米结构的实例和人造结构颜色的研究已用于设计具有先进功能的材料,例如在光学传感,伪装和反伪造技术中使用的材料。[6]
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
摘要:家禽和家禽肉被认为是人类野生动物病和沙门氏菌病的最重要来源。然而,有关弯曲杆菌和沙门氏菌的发生的数据与肠道原生动物(如胚泡刺激)同时发生。在家禽中仍然非常稀缺。因此,这项研究旨在研究来自农场或埃及现场鸟类市场收集的214只鸡的粪便样品中这三种微生物之间的存在和可能相互作用。获得的结果表明弯曲杆菌属,沙门氏菌和胚泡sp。分别存在于91.6%(196/214),44.4%(95/214)和18.2%(39/214)的测试样品中,强调了这些微生物的主动循环。此外,据报道弯曲杆菌属的发生之间有显着的正相关。和胚泡sp。以及胚泡sp之间的显着负相关。和沙门氏菌属。这项研究确认了胚泡sp之间先前报道的关联。和弯曲杆菌属。在公开胚泡sp之间的关联时。和沙门氏菌属。;它还突出了需要改善对家禽肠道菌群中细菌与真核生物之间相互作用的研究的必要性。
Institute(IUCA),50009 Zaragoza,西班牙; Abeltranros@salud.aragon.es 3 Aragon Agrifood Institute(IA2),50013 Zaragoza,西班牙; 50013 50013西班牙扎拉戈萨; M.T.T.);个人电脑。心血管(Cibercv),50009 Zaragoza,Hospitology,医院CL Nico nico Icressitorio Lozano Blesa,50009 Zaragoza,西班牙 *通信:Monteagu@unizar.es
胚胎培养基的完善对于提高胚胎生存能力和体外生产效率至关重要。我们以前的工作表明,传统培养基中的养分(碳水化合物,氨基酸和维生素)远远超出了对胚胎的需求,并在营养不良的环境中产生具有发育能力的胚胎是可行的。在这里,我们旨在评估补充外源脂质和L型碳碱对牛胚泡发育的影响,并进一步完善我们的RN条件。zygotes,并减少了含有6.25%的标准营养浓度的养分培养基,这些养分浓度是补充L-碳碱和无脂质或富含脂质的BSA的6.25%。与其他两组相比,在富含脂质的脂质培养基中观察到胚泡的发育增加。然而,在两种减少的营养条件下,胚泡细胞的数量低于在对照条件下获得的细胞数。然后,我们检查了与脂质代谢,葡萄糖代谢,氧化还原平衡和胚胎质量以及线粒体DNA拷贝数,ATP生产和脂质谱相关的18种转录物的表达水平。结果表明,脂质代谢,胚胎质量和氧化还原酶相关的基因被上调,而与葡萄糖相关的基因在源自营养较低的脂质富含脂质疾病的胚胎中被下调。最后,我们确定了富含脂质的BSA具有富集的亚油酸,硬脂酸,油酸,棕榈酸和α-核酸脂肪酸,这是一种脂质曲线,可导致脂质代谢增加,并改善在减少的营养条件下牛bovine胚胎的胚泡发育。
肌腱病和肌腱破裂:包括fastive在内的氟喹诺酮与所有年龄段的肌腱炎和肌腱破裂的风险增加有关。这种不良反应最常涉及跟腱,而跟腱破裂可能需要手术修复。肌腱炎和肌腱破裂(肩部),手,二头肌,拇指和其他肌腱部位也已被报道。在服用皮质类固醇药物的患者以及肾脏,心脏或肺移植术的患者中,通常60岁以上的老年患者患有氟喹诺酮相关肌腱炎和肌腱破裂的风险进一步增加。除了年龄和皮质类固醇使用外,还可能独立增加肌腱破裂的风险包括剧烈的身体活动,肾衰竭以及先前的肌腱疾病,例如类风湿关节炎。肌腱炎和肌腱破裂也发生在服用没有上述危险因素的氟喹诺酮类药物中。肌腱破裂可能在治疗完成期间或之后发生;据报道,在完成治疗后长达几个月发生的病例已有报道。的情况。应建议患者以肌腱炎或肌腱破裂的第一个迹象休息,并联系其医疗保健提供者,以改用非喹诺酮抗菌药物。
