按照本技术数据表中规格应用的计划R 140流的平整层归类为符合EN 13813标准的CT-C35-F7-A12。计划R 140流是一种固定的,可泵送的,快速的,自由的工业化合物,旨在作为最终佩戴层或带有轻型工业载荷的工业地板上的树脂涂料的底层,并且适合作为胶合面板和固体硬木地板的底层。计划R 140流量已准备就绪,通常不需要在接触交通负荷之前进行表面处理,但是由于暴露于化学负荷或出于美学原因,可能需要用合适的表面处理或树脂涂层覆盖。计划R 140流以灰色提供的粉末形式的自动呈现产品,由特殊的快速干燥和快速设定的粘合剂组成,特别是分级的沙子,聚合物和特殊的添加剂,并在Mapei自己的R&D实验室中开发了特殊的添加剂。与水混合时,计划R 140流量成为一种收缩补偿的自由诉讼化合物,具有良好的流量特性,易于施用,快速固化并与基板完美结合。计划R 140流量可以用手或泵混合并施加,并以3至40毫米的厚度散布在大型表面上。设置后,计划R 140流具有高水平的压缩力和弯曲强度以及对磨损的抵抗力。当达到规定的残留水分时,可以覆盖R 140的计划,具体取决于地板饰面的类型。
量子技术从学术实验室设置到市售产品迅速成熟,新兴全球市场的轮廓开始变得可见。作为欧洲领先的量子生态系统之一,Quantum delta nl(QDNL)认为,我们有责任提前思考:未来的量子行业应该是什么样的,我们如何期待它对经济,社会和全球技术环境的影响?与量子计算和量子通信一起,量子传感是一个经常被忽略的区域,在某些方面可以考虑到最成熟的量子技术。量子对环境的极端敏感性,它形成了用于扩展量子计算机的瓶颈,这是量子感知的主要资产,允许从根本上进行新的测量形式。这可以用于许多不同行业的广泛应用,例如能源,制造,健康和国防1。所有这些应用都需要具有不同性能标准的不同类型的传感器,而这些传感器又可以通过多个基础硬件平台实现(即量子模式)。此外,与量子计算和量子通信网络相比,该领域的每个人都在努力统一的技术目标。这使得很难定义通用的量子传感器,因此必须将努力集中在特定领域。在荷兰生态系统中,作为QDNL催化剂程序3(CAT-3)的一部分开发了三个量子传感测试台。这些测试台的目的是加速三个硬件平台的从实验室到工业的过渡:冷原子2,钻石4中的氮气胶合(NV)中心。实现此目标需要清楚地了解基于这些平台开发工具所需的关键硬件组件,以及欧洲生态系统的优势和依赖性在供应商方面。在较早的研究中,我们对量子计算5和量子通信网络进行了此练习6,
热色素[3]或发光探针[4]和高温计,[5]具有传感器大小,从而建立了空间分辨率至纳米尺度(纳米热计)[6],它们都有自己的优点和缺点。反向传感器(温度计)实时指示温度,因此无法提供有关经过的温度事件的信息。相比之下,指示器(不可逆传感器)通过定义的不可逆信号改变遇到了温度事件。他们可以提供有关不希望的温度滥用的信息,即,在整个材料的整个历史上,胶水的漏洞,电子压力形成或电子功能以及所需的温度激活过程,例如固化胶或消毒。但是,这些需求需要足够小的温度指示剂添加剂,这可以精确地从所需的位置读取信息,例如两种材料之间的胶水间相互之间的胶合。对于许多应用方案,例如对易腐产品的冷链管理[7]和电子设备[8]或电池的温度监测,[9,10]光学,即比色[11]或发光[12-14],温度指示器是由于其低 - 网络可见能力而有希望的候选者。但是,它们的光信号特征意味着该指示器需要用于光线,这在许多情况下都可以防止其利用。这将使从内部获得温度历史记录,即通过非接触式读数的散装,甚至是不透明或深色实心多组件对象,这仍然是为其他方法而言。因此,由于磁信号传输本质上独立于宿主的光吸收而产生易于集成的(亚)微米尺寸的磁性温度指示剂添加剂。此外,诸如铁氧化铁之类的磁性材料对环保,廉价且进行了良好的研究。虽然基于磁性的温度依赖性[15-23]或所谓的磁性记忆效应(MME)[24,25]的实时温度传感器已经实现,但迄今为止,一种易于集成的温度指示剂添加剂具有MAG Netic Netic Netic读取选项,我们的知识尚未得到我们的知识。然而,如果这种添加剂的敏感和快速解析</div>,这种添加剂的应用潜力将是巨大的
背景和客观:睡眠阶段是睡眠障碍诊断的重要步骤,这对于专家来说是时间密集型和费力的手动执行这项工作。自动睡眠阶段分类方法不仅减轻了这些苛刻任务的专家,而且可以提高分类过程的准确性和效率。方法:一种新型的基于生物信号的新型模型,该模型是通过使用各种生理学信号的3D卷积操作和图形卷积操作的组合构建的。3D卷积和图形卷积都可以从相邻的大脑区域汇总信息,这有助于从生物信号中学习固有的连接。脑电图(EEG),EEC胶合图(EMG),电击图(EOG)和心电图(ECG)信号用于提取时间域和频域特征。随后,这些信号分别输入了3D卷积和图形卷积分支。3D卷积分支可以探索时间序列中每个通道中的多通道信号与多波段波之间的相关性,而图形卷积分支可以探索每个通道与每个频段之间的连接。在这项工作中,我们使用ISRUC数据集(来自子组1的亚组3和50个随机样本)开发了提出的多通道卷积组合睡眠阶段分类模型(Mixsleepnet)。结果:基于第一个专家的标签,我们生成的Mixsleepnet的精度分别为ISRUC-S3的F1得分和Cohen Kappa得分分别为0.830、0.821和0.782。对于ISRUC-S1数据集,它的准确性分别为0.812、0.786和0.756。根据第二专家进行的评估,ISRUC-S3和ISRUC-S1数据集的全面精度,F1分数和Cohen Kappa系数分别为0.837、0.820、0.789和0.829、0.829、0.791,0.791,0.791,0.7775。结论:拟议方法通过所提出的方法的绩效指标的结果要比所有比较模型的结果要好得多。在ISRUC-S3子数据库上进行了其他实验,以评估每个模块对分类性能的贡献。
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
J.Körber,J。Heiler,24,9289(2024)M。Cross,R。Nold,F .. Smet,J。Ul-Hassan,鲍尔(J. Meiers) inf。 10,88(2024)E。Back,P。Kuna,W。Knolle,F。Caiser,N.T。 儿子,M。Welsh,J。Ul-Hassan,V。V。V. V. Vorobyov,J。Wrashtrup,核旋转旋转值的高保真光学读数。 修订版 Lett。 132,180804(2024)E。Hesselmeier,P。Kuna,I。I. I. I. I. Sounds,M。Gwing,J。Ul-Hassan,D。Daseri,F。Caiser,V。V。V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. Vorobyov。 修订版 Lett。 132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。 9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。24,9289(2024)M。Cross,R。Nold,F ..Smet,J。Ul-Hassan,鲍尔(J. Meiers)inf。10,88(2024)E。Back,P。Kuna,W。Knolle,F。Caiser,N.T。 儿子,M。Welsh,J。Ul-Hassan,V。V。V. V. Vorobyov,J。Wrashtrup,核旋转旋转值的高保真光学读数。 修订版 Lett。 132,180804(2024)E。Hesselmeier,P。Kuna,I。I. I. I. I. Sounds,M。Gwing,J。Ul-Hassan,D。Daseri,F。Caiser,V。V。V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. Vorobyov。 修订版 Lett。 132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。 9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。10,88(2024)E。Back,P。Kuna,W。Knolle,F。Caiser,N.T。儿子,M。Welsh,J。Ul-Hassan,V。V。V. V. Vorobyov,J。Wrashtrup,核旋转旋转值的高保真光学读数。修订版Lett。 132,180804(2024)E。Hesselmeier,P。Kuna,I。I. I. I. I. Sounds,M。Gwing,J。Ul-Hassan,D。Daseri,F。Caiser,V。V。V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. Vorobyov。 修订版 Lett。 132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。 9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。Lett。132,180804(2024)E。Hesselmeier,P。Kuna,I。I. I. I. I.Sounds,M。Gwing,J。Ul-Hassan,D。Daseri,F。Caiser,V。V。V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. V. Vorobyov。修订版Lett。 132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。 9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。Lett。132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。 9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。132,090601(2024)J。Heiler,J。Körber,J。亚微米4H-SIC膜,NPJ 40 Mater。9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E. Sound,J。Ul-Hassan,O.O。9,34(2024)D。Liu,F。Caiser,V。Bushmakin,E。E.Sound,J。Ul-Hassan,O.O。Soykal,J。Wrachtrup,SIC中的硅空位中心:确定整合量子光子学的内在自旋动力学,NPJ量。inf。10,72(2024)S.K。 Parthasarathy,B。Kallinger,F。Kaiser,P。Berwian,D.B.R。 Dasari,J。Friedrich,R。Nagy,使用碳化硅中的核自旋可扩展的量子记忆节点,物理。 修订版 应用19,034026(2023)H。Singh,M.A。 Hollberg,M。Ghezellou,J。Ul-Hassan,F。Kaiser,D。Suter,4H-SIC中的单个浅硅胶合中心的表征,物理。 修订版 b 107,134117(2023)10,72(2024)S.K。Parthasarathy,B。Kallinger,F。Kaiser,P。Berwian,D.B.R。 Dasari,J。Friedrich,R。Nagy,使用碳化硅中的核自旋可扩展的量子记忆节点,物理。 修订版 应用19,034026(2023)H。Singh,M.A。 Hollberg,M。Ghezellou,J。Ul-Hassan,F。Kaiser,D。Suter,4H-SIC中的单个浅硅胶合中心的表征,物理。 修订版 b 107,134117(2023)Parthasarathy,B。Kallinger,F。Kaiser,P。Berwian,D.B.R。Dasari,J。Friedrich,R。Nagy,使用碳化硅中的核自旋可扩展的量子记忆节点,物理。修订版应用19,034026(2023)H。Singh,M.A。Hollberg,M。Ghezellou,J。Ul-Hassan,F。Kaiser,D。Suter,4H-SIC中的单个浅硅胶合中心的表征,物理。修订版b 107,134117(2023)
erovskite太阳能电池(PSC)近年来取得了前所未有的进展,最高的认证效率达到了25%以上1。为了进一步提高PSC的效率和过度提高单一结构太阳能电池的详细平衡理论限制,通常通过与成熟光伏技术的宽带(WBG)Perovskites进行整合来应用串联太阳能电池,例如CrystallineIne,例如Crystallineine Silicon(C-SI),Copper(C-SI),Copper(copper),copper(in,ga)2(cigs per)2(cigs per)2 - 4或其他cig pers peh of pers pers peh of peacs 2 - 4或其他。在这些基于钙钛矿的串联光伏技术中,Perovskite – Silicon串联太阳能电池已成为一种易于商业化的,报告的有效性超过29%(参考文献8)。单片的两末端钙钛矿 - 锡的串联设备仍然主要基于前侧和后方胶片和后侧胶合晶体C-SI的基础,不幸的是,由于光反射9造成的光电损失很大。双面纹理的C-SI具有增加的光捕捞,可为钙钛矿 - 硅串联设备提供高效的上限10-12。第一个完全纹理的钙钛矿 - 丝状细胞具有前纹理的质地,其尺寸最高为6 µm,其中WBG钙晶硅质的质感硅上的硅酸盐是通过蒸发和溶液涂层的组合结合形成的。最近已证明在硅前表面上的质地较小或以下,具有可比的抗反省特性,可以使用更简单的基于单步分解的基于单步的叶片涂料或自旋涂料或旋转甲基ODS 11、11、12,从而实现了完全纹理的perovskite-silicon串联装置。然而,所报道的钙钛矿 - 硅串联太阳能电池的效率仅达到25-26%,低于双面纹理的硅结构的全部潜力。比在平坦硅11-14上产生的串联电池的低功率转换效率(PCE)主要由较小的开路电压(V OC)和填充因子更小。在技术上仍然很难使用溶液方法沉积钙钛矿层以覆盖纹理的硅,甚至
•流感疫苗:建议所有6个月以上的儿童使用。所有8岁及以下的儿童应在他们接受流感疫苗的第一个季节中接受2剂。•流感灭活 - 注射•五杆胶合疫苗,包括DTAP,HIB,脊髓灰质炎。•DTAP-预防白皮亚,破伤风和细胞百日咳(百日咳),4剂量系列•HIB- hib-可预防流感haemophilus haemophilus b b,4剂量系列•小脊髓灰质炎polio疫苗,4剂量系列,4剂量系列•rotavirus-rotavirus-inavirus-inavirus in and 2、4和6个月。3个月大后不要发起本系列。州不要求入学。•乙型肝炎3剂量系列•肝炎2剂量系列•肺炎球菌13-肺炎球菌疫苗可预防pnuemoniae链球菌。4剂量系列•Varicella-可预防水痘/鸡肉痘,2剂•MMR-可预防麻疹,腮腺炎和风疹。 2剂量系列。 •脑膜炎球菌ACWY-可预防引起脑膜炎的细菌(血清群A,C,W,Y)。 2剂量系列。 •脑膜炎球菌B-预防引起脑膜炎的细菌(血清群B)。 2剂量系列。 •HPV-预防通常引起癌症的人乳头状瘤病毒菌株。 2-3剂量系列。 •CDC追赶免疫计划•疫苗信息报表(VIS),由CDC 发布4剂量系列•Varicella-可预防水痘/鸡肉痘,2剂•MMR-可预防麻疹,腮腺炎和风疹。2剂量系列。 •脑膜炎球菌ACWY-可预防引起脑膜炎的细菌(血清群A,C,W,Y)。 2剂量系列。 •脑膜炎球菌B-预防引起脑膜炎的细菌(血清群B)。 2剂量系列。 •HPV-预防通常引起癌症的人乳头状瘤病毒菌株。 2-3剂量系列。 •CDC追赶免疫计划•疫苗信息报表(VIS),由CDC 发布2剂量系列。•脑膜炎球菌ACWY-可预防引起脑膜炎的细菌(血清群A,C,W,Y)。2剂量系列。 •脑膜炎球菌B-预防引起脑膜炎的细菌(血清群B)。 2剂量系列。 •HPV-预防通常引起癌症的人乳头状瘤病毒菌株。 2-3剂量系列。 •CDC追赶免疫计划•疫苗信息报表(VIS),由CDC 发布2剂量系列。•脑膜炎球菌B-预防引起脑膜炎的细菌(血清群B)。2剂量系列。 •HPV-预防通常引起癌症的人乳头状瘤病毒菌株。 2-3剂量系列。 •CDC追赶免疫计划•疫苗信息报表(VIS),由CDC 发布2剂量系列。•HPV-预防通常引起癌症的人乳头状瘤病毒菌株。2-3剂量系列。 •CDC追赶免疫计划•疫苗信息报表(VIS),由CDC 发布2-3剂量系列。•CDC追赶免疫计划•疫苗信息报表(VIS),由CDC
• 设计位于内利根的克莱德河上更换大桥。Long Bai,Stantec Australia。• 掌握铁路接口管理:面向澳大利亚资产所有者的深入指南。David Bailey,Sterling Infrastructure • 开发用于大跨度桥梁的创新型超高性能预应力混凝土 U 型梁 - 案例研究,Arash Behnia,Robert Bird Group • Doolan 桥面加固和长寿修复工程 - 如何以仅为新桥成本的一小部分延长使用寿命。Patrick Bigg,木材修复服务。• 河路桥 - 设计与施工 - 轻型净跨更换解决方案,经久耐用。Patrick Bigg,木材修复服务。• 昆士兰州道路资产检查的临时交通管理变化。Rebecca Blair,Osborn Consulting。• 采矿沉降影响后 Redbank Creek 涵洞的修复。Peter Boesch,Stantec Australia。 • 一种对现有混凝土涵洞和木桥结构进行荷载等级评估的方法。Awais Jamil Chaudry,Stantec。• 塔斯马尼亚多座桥梁修复的再碱化技术。Atef Cheaitani,修复技术,悉尼,新南威尔士州• 案例研究:钢筋混凝土桥梁 17 年的防腐。Atef Cheaitani,修复技术。• 霍华德街大桥改造——小桥回收利用的案例研究。Nicholas Critchley,海洋与土木维护。• 把握更大图景——确定铁路资产管理需求的合作案例。Juan Diaz-Cuevas,AECOM。• 严重腐蚀的混凝土桥梁下部结构的可持续修复和保护。Andrew Dickinson,Vector Corrosion Technologies。• 微型桩在桥梁建设中发挥作用吗?Christopher Dowding,Osborn Consulting。 • 桥梁和涵洞结构修复的新型 FRP 解决方案,Mo Ehsani,QuakeWrap,美国。• 铁路涵洞更新 - 在受限通道窗口内取得成功的设计和施工方法。Stephen Farrington,Sterling • 在铁路下方安装 Neerim 路平交道口服务梁以方便公用设施切换。Daniel Fedele,Beca。• 桥梁设计建模与碰撞/冲击建模的比较。Dane Hansen,IF3 澳大利亚 • 2 级桥梁检查:地方政府的后续步骤。Tim Heldt,Osborn Consulting。• 为 Rozelle 立交项目拆除 Beatrice Bush 大桥。Matt Hennessy,EIC Activities。• 澳大利亚木桥设计规范的演变。Clay Hoger,木材研究与开发。• 全面测试以确定胶合木桥的荷载分担系数。Clay Hoger,木材研究与开发。 • 使用 3D 现实模型、检查软件和 AI 来管理桥梁基础设施。Liam Holloway 博士,Duratec 澳大利亚 • 在悉尼郊区公共设施上修建桥梁 - 流程和挑战。Eric Hooimeyer,Teleo Design。• 弗兰克斯顿-丹德农路桥升级。David Huggett,SMEC 澳大利亚 • 位于新南威尔士州贝加谷郡的 Cuttagee 桥状况和荷载等级评估,Muhammad Abdullah Jamal,STANTEC。• 基于可靠性方法的桥梁管理增强可持续性。Sachidanand Joshi,UBMS 研究小组。印度。• 儿童桥。Nicholas Keage,AECOM。• 小型桁架桥的分析与设计。Jeandré le Roux,Tiaki 工程顾问公司。新西兰。• 老旧铁路桥梁上部结构更换设计:复合桥面案例研究,Mehdi Lima,Sterling Infrastructure • Loganlea 路立交桥混凝土桥面修复与更换,包括可持续性举措。 Evan Lo,昆士兰州交通和主要道路部。• Dibble Avenue 水坑边坡加固 – 密集城市环境中的旧砖坑修复。Paul Lunniss,内西区议会。
研讨会:数字奴隶Ilia afanasev,Elias Moncef Bounatrou,MaximilianGrübsch,Anna Jouravel,进入21st人文科学和社会科学中的研究机会和方法发生了巨大变化。大语言模型(LLM)的培训和伯特等变压器的发展(Devlin等人2019)或GPT家族(Brown等人al 2020)影响所有语言领域,特别是自然语言的处理(NLP),而斯拉夫语言学也不例外(请参见Nogolová等。 2023)。 本研讨会的目的是探索LLM对斯拉夫研究中问题和工作方法的影响。 Regina Guzaerova(Justus-Liebig-universitätgießen)基于语料库的分析,对俄罗斯讲俄罗斯的媒体领域的政治正确性和新道德的概念这项研究探索了俄罗斯语言媒体领域的政治正确性和新道德的概念通过全面的基于语料库的分析。 使用先进的自然语言处理(NLP)技术与传统语料库语言方法一起研究,研究了这些概念如何被列入并已在近年来在俄罗斯媒体中发展。 该研究使用各种来源的多样化和代表性语料库,包括俄罗斯报纸,在线新闻平台,博客和社交媒体,跨越2010年至2024年。 情感分析评估了公众的态度和情感色调,揭示了媒体报道的发展方式。 2。Nogolová等。2023)。本研讨会的目的是探索LLM对斯拉夫研究中问题和工作方法的影响。Regina Guzaerova(Justus-Liebig-universitätgießen)基于语料库的分析,对俄罗斯讲俄罗斯的媒体领域的政治正确性和新道德的概念这项研究探索了俄罗斯语言媒体领域的政治正确性和新道德的概念通过全面的基于语料库的分析。使用先进的自然语言处理(NLP)技术与传统语料库语言方法一起研究,研究了这些概念如何被列入并已在近年来在俄罗斯媒体中发展。该研究使用各种来源的多样化和代表性语料库,包括俄罗斯报纸,在线新闻平台,博客和社交媒体,跨越2010年至2024年。情感分析评估了公众的态度和情感色调,揭示了媒体报道的发展方式。2。这个广泛的时间范围可以详细探讨与政治正确性和新道德有关的话语中的时间动态和转变。高级NLP技术,例如命名实体识别(NER)和主题建模标识语料库内的关键实体和基本主题。话语分析认真研究了媒体对政治正确性和新道德的框架,从而强调了政治取向和媒体类型的差异。结果提供了对术语频率,分布和上下文的见解,从而提供了对公共话语的细微理解。趋势说明了这些概念的演变,并与重大的社会政治事件相关。这项研究为全球政治正确性和不断发展的社会规范的全球表现形式的研究做出了贡献。通过关注讲俄语的背景,我们阐明了这些概念如何在特定的文化和语言领域中进行本地化,有争议和重新构想。我们的发现暗示了理解跨文化交流,媒体话语分析以及与社会正义和文化变革有关的思想的全球循环。Maksim Aparovich (KNOT Knowledge Research Group, Brno University of Technology), Volha Harytskaya, Vladislav Poritski, Oksana Volchek (independent scholar, Lithuania), Pavel Smrž (KNOT Knowledge Research Group, Brno University of Technology) Towards a GLUE-type benchmark for Belarusian Recent progress in language modelling gave rise to various kinds of natural language understanding benchmarks.其中许多类似于胶水[Wang等。2020]和波兰[Rybak等。2016a]及其后代超粘合剂[Wang等。2019b];特别是,此类基准可用于俄罗斯[Shavrina等。2020],但它们尚未用于一些较小的,相对较低的斯拉夫语言,这会阻碍LLMS中多语言能力的进一步发展。本演示文稿为东斯拉夫语言是白俄罗斯语的胶合型基准。基准包括五个专注于以下任务的新型数据集:1。句子级别的情感分析。具有正性和负极性(无中性)的句子是从主题上不同的在线资源中手动选择的,这些句子反映了现代书面白俄罗斯人的现实世界多样性。命名实体识别。数据集,源自通用依赖性中的BE_HSE语料库[Nivre等。2020; Shishkina&Lyashevskaya 2021],已根据通用指南进行注释[Mayhew等。2024]。