。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 4 月 1 日发布。;https://doi.org/10.1101/2020.03.30.016485 doi:bioRxiv 预印本
“所有草药的王”是人参,一种补品和药草(Tao et al。,2023)。传统中药将人参的效率归因于延长生命并补充重要能量(IM,2020年)。人参对神经系统疾病的治疗益处得到了广泛的临床前和临床数据的支持(Mancuso和Santangelo,2017年)。人参的活性成分包括皂苷,多糖,精油和多肽(Ha等,2007; Ni等,2022; Tao等,2023)。Ginsenosides由20(s) - 甲二二二醇和20(s) - dammarane类型的丙二醇糖蛋白组成(Zhou等,2019a)。Ginsenoside RB1(GSRB1)是一种高度流行的人参皂苷,用作主要的原帕纳二二醇皂苷(图1)(Kim等,2022; Ni等,2022)。GSRB1可用于治疗影响神经,心血管和内分泌系统的多系统疾病(Zheng等,2017; Zhou等,2019b; Gong等,2022)。GSRB1已被发现表现出几种生物学活性,尤其是在神经系统中。这些活性可以穿透血脑屏障并发挥神经保护作用,例如抗炎性,抗氧化剂,抗凋亡和抗嗜硫酸盐(Kim,2012; Kim等,2013; Ong等,2015; Zhou等,2015; Zhou等,2019b)。最近的研究表明,GSRB1可以抑制炎症,氧化应激和兴奋性毒性,减轻神经元损伤,并促进神经元细胞修复以治疗神经疾病(Kiefer和Pantuso,Pantuso,2003; Yang Je。等,2020; Shi等,2020)。等,2020; Shi等,2020)。这些发现表明GSRB1在治疗癫痫,阿尔茨海默氏病(AD)和帕金森氏病(PD)方面可能更有效。
什么是生物分子?生物分子,也称为生物分子,是细胞和生物体产生的众多物质之一。生物分子具有多种尺寸和结构,并具有多种功能。四种主要类型的生物分子是碳水化合物、脂质、核酸和蛋白质。在生物分子中,核酸(即 DNA 和 RNA)具有存储生物体遗传密码的独特功能 - 决定蛋白质氨基酸序列的核苷酸序列,这对地球上的生命至关重要。蛋白质中可以出现 20 种不同的氨基酸;它们出现的顺序在确定蛋白质结构和功能方面起着根本性的作用。蛋白质本身是细胞的主要结构元素。它们还充当转运体,将营养物质和其他分子移入和移出细胞,并作为酶和催化剂参与生物体内发生的绝大多数化学反应。蛋白质还形成抗体和激素,并影响基因活动。碳水化合物主要由含碳、氢和氧原子的分子组成,是所有生命的基本能量来源和结构成分,也是地球上最丰富的生物分子之一。它们由四种糖单元组成——单糖、双糖、寡糖和多糖。脂质是生物体的另一种关键生物分子,具有多种作用,包括作为储存能量的来源和化学信使。它们还形成膜,将细胞与周围环境隔开,并将细胞内部分隔开来,在高等(更复杂)生物中产生细胞器,如细胞核和线粒体。例子包括胞苷、尿苷、腺苷、鸟苷和胸苷。核苷经磷酸化后变成核苷酸。除了作为核酸的结构单元外,核苷酸还可以作为化学能的来源(例如三磷酸腺苷或 ATP)。
tafamidis是一种经甲状腺素蛋白稳定剂,已证明可以增加生存率和由于ATTR-CA而导致的住院下降。di-flimisal是一种非甾体抗炎药,在体外稳定跨甲状腺素蛋白,已被发现延迟了ATTRV病例的神经系统参与。2尽管关于二肾上腺心脏病学有效性的数据很少,并且基于小规模的研究,但该药物已用于ATTR-CA患者中,不存在治疗性替代品的患者。3–5由于这种抗炎性治疗的潜在不良反应在倾向于出现心力衰竭和一定程度的肾衰竭的患者中,并且经常服用抗凝剂,因此担心在ATTR-CA患者中长期使用双肾上腺静脉。我们旨在评估Di plimisal作为ATTR-CA的治疗方法的耐受性,安全性和效率。在2018年6月至2023年3月之间,对西班牙医院的Attr-CA患者进行了回顾性的纵向分析。我们评估了治疗耐受性,心电图和超声心动图发现以及不良事件的发生率。所研究的安全参数包括肾功能恶化(肌酐> 0.3 mg/ dl),明显的出血和胃不耐受,促使治疗暂停。di -flimisal以250 mg的剂量每12小时服用30例患者(28名男性;平均年龄77.5 10年)。,有2个具有ATTRV基因型(Val50met和Ala65THR),而Attrwt有28个。此外,有13(43%)患有腕管综合征,11(36.7%)二头肌肌腱破裂,5(16.7%)的腰椎狭窄。大多数患者患有早期疾病(在国家淀粉样蛋白中心分期系统的I期中为86.2%)。在治疗开始时,13例(43.3%)患有纽约心脏协会(NYHA)I级疾病,16例(53.3%)在NYHA II类中,而NYHA III中有1名(3.3%)。此外,有11例患者(36.7%)患有宫缩术,有5例(16.7%)患有起搏器。用质子泵抑制剂治疗22例患者(73%),11例(36.6%)接受了抗凝治疗(3例使用了菌conocoumarol和8种直接抗凝剂)。只有1名患者接受帕蒂西兰治疗多神经病。二十名患者(66.7%)接受利尿剂,主要剂量低30 [四分位数,10-40] mg。中值随访时间为260 [四分位间范围,123-483]天。由于不良事件和4例(13.3%)参加临床试验,该治疗在7例患者(23.3%)中停止了治疗。由于徒劳,在1名患者中撤回了治疗。有4个记录的出血发作,其中3个没有威胁生命(Epistaxis,牙龈出血,手臂的自发性血肿),其中1个带有多个由于多个跌倒的硬膜下血肿。肾功能显着
抽象的肾脏肥大的特征是细胞大小和蛋白质含量的增加,并具有最小的增生。尚未确定控制这种细胞生长模式的机制。目前的研究检查了由BSC-1肾上皮细胞(GI)阐述的生长抑制剂(GI)是否具有与转化生长因子 /3(TGF-FI)几乎相同的生物学特性,可以将有丝分裂的刺激转化为在原始培养的兔肾管近端细胞中的绩效刺激。胰岛素(10,ug/ml)加上氢化可的松(50 nm)增加了每个细胞的蛋白质量,细胞体积和[3Hjthymidine掺入这些细胞中的24和48小时。gi/tgf-f8(10个单位/ml)导致[3H〜-胸苷incorporation的最小刺激。与胰岛素加材料可添加在一起时,GI/TGF-J8抑制了这些有丝分裂剂对[3H]胸苷掺入的刺激作用,但并未阻止细胞和细胞体积I.e。蛋白质的增加,细胞受到了肥大。这种模式持续了48小时,表明GI/TGF-/3对有丝分裂刺激的DNA合成产生了延长的抑制作用,而不是延迟其发作。对Amiloride敏感的Na+摄取(指示Na+/H+止痛活性)与每个细胞和细胞体积的蛋白质相关,而不是与DNA合成。这些研究表明,对细胞大小的控制可能是由阐述生长抑制因子介导的自分泌机制来调节的,这些抑制因子改变了生长对有丝分裂剂的模式。p60从近端管状细胞携带的条件培养基的凝胶色谱分馏产生了抑制的馏分[BSC-1细胞中的3Hjthymidine掺入和CCL 64细胞;这些细胞系和色谱行为的相对抑制活性与GI/TGF-FI观察到的相似。
血管老化是机体衰弱的特征,是心脏、脑、肾等各种重要器官慢性疾病的病理基础。动脉僵硬(AS)是血管老化的结果,伴随而来的是结构和功能的变化(1)。与 AS 相关的病理变化发生在血管壁中。具体而言,由于弹性蛋白降解增强和血管介质中胶原沉积,以及血管周围纤维化和细胞外基质异常,进行性心内膜增厚最终导致血管直径增加(2,3)。血管直径增加过程中血管壁的生物学变化也会导致血管顺应性降低。在先前的研究中,动脉扩张不仅被视为不良血管事件(动脉瘤和动脉夹层)的独立危险因素,也被认为是不良心血管事件的独立预测因子(4)。不良后果与 AS 增加密切相关。心踝血管指数 (CAVI) 于 2006 年推出,作为直接评估动脉僵硬性的方法 ( 5 )。无论血压如何,它都能产生可重复的结果 ( 6 , 7 )。它源自 Bramwell-Hill 方程,并引入了僵硬性参数 β 。该参数 β 代表动脉扩张性,与收缩和舒张期间动脉直径 (AD) 的变化相关 ( 8 )。然而,Spronck 等人的研究报告称,CAVI 与血压并不独立,并提出了一种与血压无关的校正形式,即 CAVI 0 ( 9 , 10 )。它们是使用以下公式计算的:
引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
在过去十年中,免疫疗法已成为胃肠道肿瘤最有前景的治疗方法。但低反应率和耐药性仍然是主要问题。因此,开发辅助疗法以提高免疫治疗的有效性并防止耐药性势在必行。人参在传统中药中被用作天然免疫增强剂已有数千年历史。人参的有效成分人参皂苷几十年来在肿瘤治疗中发挥着重要作用,是抗肿瘤辅助疗法的候选药物。它们被认为可以与免疫治疗药物协同作用,以提高疗效并减少肿瘤耐药性和不良反应。本综述总结了人参皂苷在胃肠道肿瘤免疫治疗中的应用研究,并讨论了未来的潜在应用。